02-02.2

Control valves RV 702

Kv coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.
Because of eventual minus tolerance 10% of Kv_{100} against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:
$K v s=1.2 \div 1.3 \mathrm{Kv}$
It is necessary to take into account to which extent $Q_{\max }$ involve "precautionary additions" that could result in valve oversizing.

Relations of Kv calculation

		Pressure drop $\begin{gathered} p_{2}>p_{1} / 2 \\ \Delta p<p_{1} / 2 \end{gathered}$	$\begin{gathered} \text { Pressure drop } \\ \Delta p \geqq p_{1} / 2 \\ p_{2} \leqq p_{1} / 2 \\ \hline \hline \end{gathered}$
$\mathrm{Kv}=$	Liquid	$\frac{\mathrm{Q}}{100} \sqrt{\frac{\rho_{1}}{\Delta \mathrm{p}}}$	
	Gas	$\frac{Q_{n}}{5141} \sqrt{\frac{\rho_{n} \cdot T_{1}}{\Delta \cdot \cdot p_{2}}}$	$\frac{2 . Q_{n}}{5141 \cdot p_{1}} \sqrt{P_{n} \cdot T_{1}}$
	Superh. steam	$\frac{\mathrm{Q}_{\mathrm{m}}}{100} \sqrt{\frac{\mathrm{~V}_{2}}{\Delta \mathrm{p}}}$	$\frac{Q_{m}}{100} \sqrt{\frac{2 v}{p_{1}}}$
	Sat. steam	$\frac{Q_{m}}{100} \sqrt{\frac{\mathrm{~V}_{2} \cdot \mathrm{x}}{\Delta \mathrm{p}}}$	$\frac{Q_{m}}{100} \sqrt{\frac{2 v \cdot x}{p_{1}}}$

Above critical flow of vapours and gases

When pressure ratio is above critical ($p_{2} / p_{1}<0.54$), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness and then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

Cavitation

Cavitation is a phenomenon when there are steam bubbles creating and vanishing in shocks - generally at the narrowest section of flowing due to local pressure drop. This event
expressively cuts down service life of inner parts and can result in creation of unpleasant vibrations and noisiness. In control valves it can happen on condition that

$$
\left(p_{1}-p_{2}\right) \geqq 0.6\left(p_{1}-p_{s}\right)
$$

Valve differential pressure should be set the way so that neither any undesired pressure drop causing cavitation can occur, nor liquid-steam(wet steam) mixture can create. Otherwise it must be taken into account when calculating Kv value. If the creation of cavitation still threatens, it is necessary to use a multi-step pressure reduction.

Valve flow characteristics

L - linear characteristic

$$
\mathrm{Kv} / \mathrm{Kv}_{100}=0.0183+0.9817 \cdot\left(\mathrm{H} / \mathrm{H}_{100}\right)
$$

R - equal-percentage characteristic (4-percentage) $\mathrm{Kv} / \mathrm{KV}_{100}=0.0183 . \mathrm{E}^{\left(4 . \mathrm{HH}_{100}\right)}$

Rangeability

Rangeability is the ratio of the biggest value of flow coefficient to the smallest value. In fact it is the ratio (under the same conditions) of highest regulated flow rate value to its lowest value.
The lowest or minimal regulated flow rate is always higher than 0.

Dimensions and units

Marking	Unit	Name of dimension
Kv	$\mathrm{m}^{3} / \mathrm{hour}$	Flow coefficient under conditions of units of flow
Kv ${ }_{100}$	$\mathrm{m}^{3} /$ hour	Flow coefficient at nominal stroke
Kvs	$\mathrm{m}^{3} / \mathrm{hour}$	Valve nominal flow coefficient
Q	$\mathrm{m}^{3} /$ hour	Flow rate in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
Q_{n}	Nm³/hour	Flow rate in normal conditions ($0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$)
Q_{m}	kg/hour	Flow rate in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
p_{1}	MPa	Upstream absolute pressure
p_{2}	MPa	Downstream absolute pressure
$\mathrm{p}_{\text {s }}$	MPa	Absolute pressure of saturated steam at given temperature (T_{1})
$\Delta \mathrm{p}$	MPa	Valve differential pressure ($\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}$)
ρ_{1}	$\mathrm{kg} / \mathrm{m}^{3}$	Process medium density in operating conditions ($\mathrm{T}_{1}, \mathrm{p}_{1}$)
ρ_{n}	$\mathrm{kg} / \mathrm{Nm}^{3}$	Gas density in normal conditions ($0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$)
v_{2}	$\mathrm{m}^{3} / \mathrm{kg}$	Specific volume of steam when temperature T_{1} and pressure p_{2}
v	$\mathrm{m}^{3} / \mathrm{kg}$	Specific volume of steam when temperature T_{1} and pressure $p_{1} / 2$
T_{1}	K	Absolute temperature at valve inlet ($\mathrm{T}_{1}=273+\mathrm{t}_{1}$)
\underline{x}	1	Proportionate weight volume of saturated steam in wet steam

Diagram for the valve Kvs value specification according to the required flow rate of water Q and the valve differential pressure Δp

The diagram serves to specify the valve Kvs value regarding to the required flow rate of water at a given differential pressure. It can be also used for finding out the differential pressure value of the existing valve in behaviour with the flow rate. The diagram apllies to water with the density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
For the value $\mathrm{Q}=\mathrm{q} \cdot 10^{\mathrm{n}}$, it is necessary to calculate with $\mathrm{Kvs}=\mathrm{k} .10^{\mathrm{n}}$. Example: water flow rate of $16.10^{-1}=1,6 \mathrm{~m}^{3} /$ hour corresponds to $\mathrm{Kv}=2,5=25.10$ when differential pressure 40 kPa .

Application of multi-step pressure reduction

When the valves are designed for operation in above-critical differential pressure ($p_{2} / p_{1}<0,54$ when throttling steam and gases), or when diff. pressure value is higher than the recom-

One-step pressure reduction

Application of orifice plate

In case of above-critical flow, the producer recommends to instal one or more orifice plate at the valve outlet to stream-line the process medium flow and to lower the noisiness. The concrete valve execution (No. of orifice plates) is designed according to pressure ratio and it is recommended to consult it with the producer.
mended service diff. pressure, it is effectual to use a throttling system in two or three steps to prevent the cavitation from creating and to ensure both a long service life of the valve inner parts and low noisiness when operating.

Two-step pressure reduction

Description

The valves with extended outlet series RV 702 are singleseated control valves of a unit construction designed to fit in all demands of an appliance the valve is designed for. The pressure-balanced, multi-step throttling system is always designed to eliminate the valve's high differential pressures with a high resistance to wearing caused by flow and effects of expanding steam. It also ensures a low noisiness level. The valve is equipped with packing "Live Loading".
The valves are delivered with weld ends.
The valves are actuated with linear actuators. The connection is designed for using both domestic and foreign actuators of the following producers: ZPA Nová Paka, ZPA Pečky, Regada Prešov, Auma, Schiebel, EMG-Drehmo, Foxboro.

Process media

The valves are especially designed to control the flow and pressure of vapours and gases without impurities. The producer recommends to pipe a strainer into pipeline in front of the valve when impurities are present. Impurities can affect the quality and reliability of regulation and can cause a reduction of the valve service life. The common process media are for example saturated or superheated steam and other media with no special demands on the used type of material of the valve. The valve application for any other media must be consulted with the producer because of the type of material that is in contact with the process medium.

Application

The sphere of application of these valves continues in the sphere for the valves series RV 502. They are especially designed for industry applications such as heating plants, power plants or regulation of technological processes. The max. permissible operating pressure values correspond to EN 12516-1, see page 23 of this catalogue.

Installation

The valves must be piped the way so that the process medium flow will coincide with the arrows indicated on the valve body. They can be installed in horizontal, vertical or inclined pipeline in any position except the position when the actuator is under the valve body. The valves DN 250 can be piped in horizontal pipeline only. The actuator cannot be tilted.

Recommended differential pressures

In regard to the pressure balancing of the plug and to linear forces of usable actuators, the valves' application in high differential pressures is not limited by the forces caused by process medium pressure but by the type of used throttling system. A recommended max. differential pressure for one step of multi-step pressure reduction is 5.0 MPa when perforated plug and perforated cage are used. It is recommended to consult the concrete cases with the producer with regard to pressure ratio and parametres of other equipment. -

Technical data

Control valves
Inlet DN 25, 50, 100, 125, 150, 250 Outlet DN 25 to 600 PN 16 to 400

Series	RV 702		
Execution	Control valve, single-seated, straight-through, with pressure-balanced plug, with extended outlet and orifice plate in extended outlet		
Range of nominal size	Inlet DN 25 to 250; outlet DN 25 to 600		
Nominal pressure	Inlet PN 160 to 320 outlet PN 16 to 250	Inlet PN 160 to 400,outlet PN 16 to 320	
Body material (including weld ends)	$\begin{gathered} \text { Cast steel } 1.0619 \\ \text { (GP } 240 \mathrm{GH}) \\ \hline \end{gathered}$	Alloy steel 1.7357 (G17CrMo5-5)	Stainless steel 1.4931 (GX23CrMoV12-1)
Material of weld ends	1.0425 (P 265 GH)	1.7335 (13CrMo4-5)	$\begin{aligned} & 1.4922 \text { (X20CrMoV 11-1) } \\ & \text { 1.4923 (X22CrMoV 12-1) } \\ & \text { 1.4903 (X10CrMoVNb 9-1) } \end{aligned}$
Seat material: \quad DN $25,50,100,125,150,250$	17021.6 (1.4006); 422906.5 (1.4027) + stellited seat STELIT 6		
Plug material: \quad DN $25,50,100,125,150,250$	17348.4 (1.4571) + stellited seat STELIT 6		
Operating temp. range	-20 to $400^{\circ} \mathrm{C}$	-20 to $550^{\circ} \mathrm{C}$	-20 to $600^{\circ} \mathrm{C}$
Weld ends	Acc. to ČSN 131075 (3/1991)		
Trim	One or two-step pressure reduction		
	Perforated plug - seat (cage), orifice plate		
Flow characteristic	Linear, equal-percentage		
Leakage rate	Acc. to ČSN EN 1349 (5/2001) Class III, execution with higher tightness Class V		
Packing	Graphite - Live Loading		

Range of Kvs values

| DN | $25 / X X X$ | $50 / X X X$ | $100 / X X X$ | $125 / X X X$ | $150 / X X X$ | $250 / X X X$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multi-step pressure reduction | Kvs values $\left[\mathrm{m}^{3} / \mathrm{h}\right]-$ linear flow characteristic | | | | | |
| 1 | $1.6-8.0$ | $3.2-32$ | $10-125$ | $16-360 *)$ | $16-360 *)$ | $40-630$ |
| 2 | $1.25-8.0$ | $2.5-32$ | $8.0-100$ | $12.5-250$ | $12.5-250$ | $40-500$ |
| Multi-step pressure reduction | Kvs values $\left[\mathrm{m}^{3} / \mathrm{h}\right]-$ equal-percentage flow characteristic | | | | | |
| 1 | $2.5-6.3$ | $6.3-25$ | $16-63$ | $32-125$ | $32-125$ | $50-320$ |
| 2 | $1.6-4.0$ | $5.0-20$ | $12.5-50$ | $25-80$ | $25-80$ | $50-160$ |

*) For PN 160 and 250 only, for PN 320 and 400 $K^{\prime 2} s_{\text {max }}=250 \mathrm{~m}^{3} / \mathrm{h}$
Nominal values of Kvs are understood as multiplies of 10 of the progression of selected number R10 (1.0; 1.25; 1.6; 2.0; 2.5; 3.2; 4.0; 5.0; 6.3; 8.0; 10.0). They are specified individually for

Dimensions and weights of RV 702 with weld ends *)

every valve acc. to the customer's requirements and value within the appropriate range showen in the table above. Parameteres of outlet (DN, PN) can be modified on request.

Connecting dimensions of weld ends

	PN								
	$16-40$	63	100	160	250	$320^{* *}$	$400^{* *}$	$16-400$	
DN	t	t	t	t	t	t	t	D	
	$[\mathrm{mm}]$								
$\mathbf{2 5}$	2.6	2.6	2.9	4	5	6	7.1	33.7	
40	2.6	2.9	3.6	5	7	6.8	11	48.3	
50	2.9	3.2	4.5	6.3	8	10	14.2	60.3	
65	3.2	3.6	5	7	10	13	17.5	76.1	
80	3.6	4	5.6	8	12.5	14.2	19	88.9	
100	4	5	7	10	14	16	20	114.3	
125	4.5	5.6	8	12.5	18	20	23	139.7	
$\mathbf{1 5 0}$	5	7	10	14	20	23	26	168.3	
200	6.3	8	12.5	18	25	28	32	219,1	
$\mathbf{2 5 0}$	7	10	16	22	32	35	38	273	
300	8	12.5	18	25				323.9	
350	9	12.5	20	28				355.6	
400	11	14	20	32				406.4	
$\mathbf{5 0 0}$	14	18	25					503	
600^{*}	18	23						610	

* For DN 600 - weld ends connection acc. to LDM execution.
** For PN 320, 400 - weld ends connection acc. to LDM execution.
These combinations of DN and PN are not available

Control valve RV 702 with weld ends

		XX	XXX	X X X	XXXX	XX	(XX/XX)	XXX	XX/XX)
1. Valve	Control valve	RV							
2. Series	Straight-through valve with extended outlet		702						
3. Type of actuating	Electric actuator			E					
	Pneumatic actuator			P					
for DN 150	Electric actuator Modact MTR ${ }^{2)}$			EPD					
Applycable to max. DN 150	Electric actuator Modact MTN Control ${ }^{21}$			EYA					
able to max. DN 150	Electric actuator Modact MTN ${ }^{2)}$			EYB					
	Electric pohon Modact MOP 52030			EYE					
	El. actuator Modact MOP Control 52030			E Y F					
	Electric actuator Modact MOP 52031			E Y G					
	El. actuator Modact MOP Control 52031			EYH					
	Electric actuator Auma SAR 7.5			E AG					
	Electric actuator Auma SAR Ex 7.5			EHH					
	Electric actuator Auma SAR 10.1			E AK					
	Electric actuator Auma SAR Ex 10.1			E AJ					
	Electric actuator Schiebel rAB5			EZG					
	Electric actuator Schiebel exrAB5			EZH					
	Electric actuator Schiebel rAB8			E Z K					
	Electric actuator Schiebel exrAB8			EZL					
	Pneumatic actuator Foxboro PO $700{ }^{11}$			PFG					
	Pneumatic actuator Foxboro PO $1502{ }^{17}$			PFD					
4. Connection	Weld ends				4				
5. Body material	Cast steel $1.0619 \quad\left(-20\right.$ to $\left.400^{\circ} \mathrm{C}\right)$				1				
	Stainless steel $1.4931 \quad\left(-20\right.$ to $\left.600^{\circ} \mathrm{C}\right)$				5				
	Alloy steel 1.7357 (-20 to $\left.550^{\circ} \mathrm{C}\right)$				7				
specified in parentheses)	Other material on request				9				
6. Packing	Graphite - Live Loading				5				
7. Multi-step pressure	One-step pressure reduction				1				
reduction	Two-step pressure reduction				2				
8. Flow characteristic	Linear - Leakage rate class III.					L			
	Linear - Leakage rate class V .					D			
	Equal-percentage - Leakage rate class III.					R			
	Equal-percentage - Leakage rate class V.					Q			
9. No. of orifice plate	Max. 3					X			
10. Nominal pressure	PN inlet / outlet						(XX/XX)		
11. Max. operating temp. ${ }^{\circ} \mathrm{C}$	Acc. to process medium							XXX	
12. Nominal size	DN - acc. to the valve's execution								($\mathrm{XX} / \mathrm{XX}$)

Order example: Two-way, control valve DN 80, PN 160, with electric actuator Modact MTN Control, body material: cast

 steel, weld ends, packing Graphite, two-step pressure reduction, linear flow characteristic is specified as follows: RV 702 EYA4152 L0 160/400-80.
Note

PN and DN of outlet, multi-step pressure reduction No. of orifice plate possibly different type of actuating is possible after the agreement with the producer.

Technical data

Type	Modact MTR
Marking in valve specification No.	EPD
Voltage	230 V
Frequency	$50 / 60 \mathrm{~Hz}$
Motor power	16 or 25 W
Control	3 - pos. c. (in connection with NOTREP positioner - continuous)
Nominal force	$10,16,25 \mathrm{kN}$
Travel	12,5 to 100 mm
Enclosure	IP 54 (IP 65 on request)
Process medium max. temperature	Acc. to used valve
Ambient temperature range	-25 to $50^{\circ} \mathrm{C}$
Ambient humidity limit	27 to 31 kg
Weight	90% (tropical execution 100% condensation)

Dimensions of Modact MTR

Columns	with acme thread			Columns	with ball bolt		
	A	B	C	Version	A	B	C
$\mathrm{P}-1045 \mathrm{a} / \mathrm{C}$	130	378	707	$\mathrm{P}-1045 \mathrm{a} / \mathrm{H}$	130	400	729

Detail of coupling

\#) RV 702, DN 100 $\div 150$
(\#) RV 702, DN 50
*" RV 702, DN 25

Specification of Modact MTR

Electric actuator MTR, linear

Mild up to hot dry with temperature range (-25 ${ }^{\circ} \mathrm{C}$ to $\left.+50^{\circ} \mathrm{C}\right)$			
Electric conection		Voltage	
To terminal board		230 V AC	
To connector 230 V AC			
Screw version	Switching-off thrust ${ }^{11)}$)	Rated operating speed	Operating speed
- 16 000/32-G	$10.0-16.0 \mathrm{kN}$	$32 \mathrm{~mm} / \mathrm{min}$.	38-32 mm/min.
言	$10.0-25.0 \mathrm{kN}$	$32 \mathrm{~mm} / \mathrm{min}$.	$38-32 \mathrm{~mm} / \mathrm{min}$.
\% $16000 / 50-\mathrm{G}$	$10.0-16.0 \mathrm{kN}$	$50 \mathrm{~mm} / \mathrm{min}$.	$60-50 \mathrm{~mm} / \mathrm{min}$.

Combinations available and specification codes: $\mathrm{A}+\mathrm{B}=07$

Notes:

1) State the switching-off thrust in your order by words. If not stated it is adjusted to the maximum rate of the corresponding range. The load torgue equals minimally the maximum switching-off thrust of the choosing range multiplied by 1.3.
2) The maximum load thrust equals the max. Switching-off thrust multiplied by:

- 0.8 for duty cycle $\mathrm{S} 2-10 \mathrm{~min}$., Or S4-25\%, 6 - 90 cycles per hour
- 0.6 for duty cycle S4-25\%, 90-1200 cycles per hour

3) The thread in the coupling is to be specified in the order by words.

Notes:

1. For the EA version with connection to the terminal board, the terminal $1 / 60$ (the wiring diagrams Z269a and Z260a) is leaded out to the terminal No. 1.
2. For EA version with connection to the terminal board the actuator is not equipped by the jumper X3:6-X:7 and X3:2-X:8 (Z296) from manufacturing plant (it is necessary to connect it by customer).

Legend:

Z5a
Z6a
Z10a
Z257b
Z260a
Z269a
Z296
Z298
B1 resistive trasmitter (potentiometer) single
B2 resistive trasmitter (potentiometer) double
B3
S1
S2
S3
S4
S5
S6
M
C capacitor
Y motor's brake
E1 space heater
X terminal board
X3
I/U electric motor's terminal board input (output) current (voltage) signals
$\mathrm{R} \quad$ reducting resistor
$R_{L} \quad$ loading resistor

Electric actuators Modact MTN and Modact MTN Control ZPA Pečky

Technical data

Type	Modact MTN Control	Modact MTN
Marking in valve specification No.	EYA	EYB
Voltage	$3 \times 220 \mathrm{~V} / 400 \mathrm{~V}(3 \times 220 \mathrm{~V} / 380 \mathrm{~V})$	
Frequency	50 Hz	
Motor power	See specification table	
Control	$3-$ position control or continuous	
Nominal force	15000 and 25000 N	
Travel	10 to 100 mm	
Enclosure	IP 55	
Process medium max. temperature	Acc. to used valve	
Ambient temperature range	-25 to $55{ }^{\circ} \mathrm{C}$	
Ambient humidity range	$5-100 \%$ with condensation	
Weight	45 kg	

Wiring diagram of actuator Modact MTN

Execution - terminal board
Position transmitter : resistance $2 \times 100 \mathrm{~W}$ or without

Position transmitter : capacity CPT 1 1/A 4 - 20 mA

Wiring diagram of actuator Modact MTN Control

With current transmitter, built-in contactor combination, brake BAM and positioner

SQ1 (MO) SQ2 (MZ) SQ3(PO) SQ5 (PZ) SQ4 (SO) SQ6(SZ) EH
CPT1
BAM-001
KO
KZ
FA1
SA2
BQ1, BQ2
ZP2.RE
power switch in "opening" direction power switch in "closing" direction limit switch in "opening" direction limit switch in "closing" direction signalisation switch in "opening" direction signalisation switch in "closing" direction heaters $2 \times$ TR 551 10k/A capacity position transmitter CPT1/A4-20mA dynamic brake contactor in "opening" direction contactor in "closing" direction thermal relay control switch "local - remote" switch "open - close" position transmitter $2 \times 100 \mathrm{~W}$ electronic positioner

Connection dimensions - details of additional specification 52442

$\frac{\prod_{2}^{1}}{\frac{1}{2}}$	\bigcirc	position	Columns pitch	B	150
			Position "closed"	b	74
				g	130
		closed	Clutch thread	I	M 20x1,5
				II	M 16x1,5
				III	M 10x1

Execution	Specification No.		RV 702
	basic	additional	
Bg2II	52442	XMXX	DN 40 $\div 80$
Bg2III	52442	XPXX	DN 25
Bg2l	52442	XRXX	DN 100 $\div 250$

Specification of actuators Modact MTN and Modact MTN Control

Basic equipment :		2 power switches MO, MZ 2 limit switches PO, PZ 2 limit and signalisation switches SO, SZ				1 position transmitter - resist. $2 \times 100 \mathrm{~W}$ or cap. CPT1/A 2 limit switches PO, PZ 2 limit and signalisation switches SO, SZ						
Basic technical data												
Typ	Power switch setting range kN	Direct power kN	Resetting speed $\mathrm{mm} \cdot \mathrm{min}^{-1}$	Travel mm	Electromotor				Weight		Specification No.	
					Power W	rpm	$\left.\begin{array}{c} \ln (400 \mathrm{~V}) \\ \mathrm{A} \end{array}\right)$	$\frac{\mathrm{lz}}{\mathrm{ln}}$	Aluminium	Cast	Basic	Additional
MT 15	11,5-15	17	50	10-100	180	900	0.67	2.5	33	45	52442	XX0X
			80		180	900	0.67	2.5				XX1X
			125		250	1380	0.77	3.4				XX3X
			36		120	660	0.67	2.2				XX2X
			27		120	660	0.67	2.2				XXAX
MT 25	15-25	32,5	50	10-100	180	900	0.67	2.5	33	45		XX4X
			80		180	900	0.67	2.5				XX5X
			125		250	1380	0.77	3.4				XX6X
			36		120	660	0.67	2.2				XX7X
			27		120	660	0.67	2.2				XX8X
Execution, electric connection :												
Via terminal board												6XXX
With conector KBSN (for Modact MTN execution only)												7XXX
Transmitter for Modact MTN			Capacity transmitter CPT 1/A 4-20 mA									XXX0
			Resistance transmitter $2 \times 100 \Omega$									XXX2
Additional electric equipment									With resistance transmitter2 $\times 100 \Omega$		With c transmitte	apacity CPT 1/A
Modact MTN execution			With local control - terminal board							XXX3		XXX1
			With unlock control - conector KBNS							XXX3		XXX1
Modact MTN Control execution (with built-in contactor combination)			Without loca control	Without brake BAM and positioner						XXX4		XXXA
			With brake BAM, without positioner		XXX5		XXXB					
			With brake BAM and with positioner				XXXC					
			With local control	Without brake BAM and positioner						XXX7		XXXD
			With brake BAM, without positioner		XXX8		XXXE					
			With brake BAM and positioner				XXXF					

Note : When execution with flasher is requested, please specify this requirement in writing - execution with flasher.

Dimensions of actuator Modact MTN

Dimensions of actuator Modact MTN Control

都

A	160
B	150
a	30
b	74
g	130
$\mathrm{c}(\mathrm{a})$	308
$\mathrm{~d}(\mathrm{~b})$	352
$\mathrm{e}(\mathrm{a})$	615
$\mathrm{f}(\mathrm{b})$	659
$\mathrm{ch}(\mathrm{g})$	715

Type marking	A	B	C	D	E	F	G	H	J	K	L
52030	305	90	300	78	334	258	592	160	99	120	325
52031	376	120	328	92	436	258	694	200	-	144	328

Specifikace pohonu Modact MOP

									XX XXX	X	X	X	X
Connection	Output	aft type A	Via termi	boar						5			
dimensions	ut	type	With con	ctor						F			
Local control, positi	on indicat												
			Without	cont	withou	position in	icator				1		
execution with	out trans	itter	Local con								4		
			Local con	for	ators M	dact MOP	Control				7		
											B		
Capacity CP	transmitte										E		
			Local con	for	uators M	dact MOP	Control				H		
		ment				Electr	notor						
	Tripping	Driving			Power	rpm	$(400 \mathrm{~V})$	I_{z} / I_{n}					
	(Nm)	(Nm)	(1/min.)	(ot)	(kW)	(1/min.)	(A)	(-)					
МØР 40/70-7		70	7		0,05	650	0,42	1,6				J	
МØР 40/65-9		65	9		0,06	830	0,34	2,0				0	
МØР 40/55-15		55	15		0,09	870	0,47	2,0				1	
МØР 40/75-25	20-40	75	25		0,18	1350	0,56	3,0				2	
МØР 40/65-40		65	40		0,25	1350	0,76	3,0				3	
МØР 40/50-50		50	50		0,25	2830	0,68	4,0	52030			4	
МØР 40/60-80		60	80		0,37	2740	1,00	3,5				5	
МØР 80/135-7		135	7		0,09	630	0,36	2,2				K	
МØР 80/140-9	40	140	9		0,12	890	0,60	2,5				6	
МØР 80/135-15	40-80	135	15	2-250	0,18	835	0,62	2,3				7	
МØР 80/105-25		105	25		0,25	1350	0,76	3,0				8	
МØР 100/130-9		130	9		0,12	890	0,60	2,5				0	
МØР 100/130-15		130	15		0,25	850	0,78	2,7				1	
МØР 100/150-25		150	25		0,37	920	1,20	3,1				2	
МØР 100/170-40	63-100	170	40		0,55	1395	1,45	3,9	52			3	
МØР 100/150-63		150	63		0,75	1395	1,86	4,0	52031			4	
MØР 100/200-80		200	80		1,1	2845	2,40	6,1				E	
МØР 100/150-100		150	100		1,1	1410	2,65	4,3				5	
МØР 100/150-145		150	145		1,5	2860	3,30	5,5				F	

the table continues on next page

			XX XXX	X	X	X \times	X
Signaliz	ion, position transmitter, b						
	Without signalisation, pos	transmitter and blinker				0	0
$\frac{\infty}{6}$	Position transmitter						1
$\stackrel{4}{\square}$	Signalization switches					2	2
$\underset{\sim}{5}$	Signalization switches and	sition transmitter				3	3
믕	Blinker					4	4
≥ 0	Position transmitter, blink					5	5
	Signalization switches and	inker				6	6
	Signalization switches, po	n transmitter, blinker				7	7
Signaliza	ion, position transmitter, bli						
		Position transmitter				A	A
		Signalization switches and position transmitter				B	B
	Sch P-0781	Position transmitter, blinker					C
응		Signalization switches, position transmitter and blinker					D
$\stackrel{5}{0}$		Without signalization, without posit. transmitter and blinker				E	
\bigcirc		Position transmitter				F	
\bigcirc		Signalization switches				G	G
\sum	Without positioner	Signalization switches and position transmitter				,	H
$$	Without positioner	Blinker					I
¢		Position transmitter, blinker					J
\sum_{∞}		Signalization switches, blinker				K	K
$\stackrel{\square}{0}$		Signalization switches, position transmitter and blinker					L
$\stackrel{\text { IT }}{ }$		Without signalization, without position transm. and blinker				M	M
$\stackrel{\rightharpoonup}{0}$		Position transmitter					N
¢		Signalization switches				\varnothing	万
친	Without positioner	Signalization switches and position transmitter				P	P
\bigcirc	and brake BAM	Blinker					
		Position transmitter, blinker				S	
		Signalization switches, blinker					
		Signalization switches, position transmitter and blinker				U	U
This mark	is valid for the the types of	actuators					P

			XX XXX	X	X	X \times	XX
Signalization, position transmitter, blinker							
	Without signalisation, position transmitter and blinker					0	0
	Position transmitter						1
	Signalization switches					2	2
	Signalization switches and position transmitter					3	3
	Blinker					4	4
	Position transmitter, blinker					5	5
	Signalization switches and blinker					6	6
	Signalization switches, position transmitter, blinker					7	7
Signalization, position transmitter, blinker							
$\overline{0}$00000000000000000000	Complete equipment Sch P-0781	Position transmitter				A	A
		Signalization switches and position transmitter				B	B
		Position transmitter, blinker					C
		Signalization switches, position transmitter and blinker					D
	Without positioner	Without signalization, without posit. transmitter and blinker				E	E
		Position transmitter				F	F
		Signalization switches				G	G
		Signalization switches and position transmitter				H	H
		Blinker				I	I
		Position transmitter, blinker				」	J
		Signalization switches, blinker				K	K
		Signalization switches, position transmitter and blinker				L	L
	Without positioner and brake BAM	Without signalization, without position transm. and blinker				M	M
		Position transmitter				N	N
		Signalization switches				\varnothing	Ø
		Signalization switches and position transmitter				P	P
		Blinker				R	R
		Position transmitter, blinker				S	S
		Signalization switches, blinker				T	T
		Signalization switches, position transmitter and blinker					U
This mark is valid for the the types of the actuators							P

Technical data

Type	SAR 07.5	SAR Ex 07.5	SAR 10.1	SAR Ex 10.1
Marking in valve's specifcation No.	EAG	EAH	EAJ	EAK
Voltage	380 or 400 V			
Frequency	50 Hz			
Motor power	See specification table			
Control	3 - position control or with signal 4-20 mA			
Nominal force	$20 \mathrm{Nm} \sim 10 \mathrm{kN} ; 25 \mathrm{Nm} \sim 12,5 \mathrm{kN} ; 30 \mathrm{Nm} \sim 15 \mathrm{kN}$			
Travel	Acc. to the valve stroke $16,25,40,63,100 \mathrm{~mm}$			
Enclosure	IP 67			
Process medium max. temperature	Acc. to used valve			
Ambient temperature range	-25 až $40^{\circ} \mathrm{C}$			
Ambient humidity limit	100 \%			
Weight	20 kg			

Specification of Auma actuators

		SA	X	XX	XX.X
		SA	R		
Duty	Control				
Execution	Normal			Ex	
	Non-explosive				
Actuator's size	07.5				07.5
	10.1				10.1

Output drive type A (thread TR 36×6 LH, flange size F10)

		$\begin{aligned} & \text { 음 } \\ & \text { 흠 } \\ & \text { 은 } \\ & \text { 은 } \end{aligned}$	SAR 10.1 SAR Ex 10.1		SAR 10.1, SAR Ex 10.1
	4		$\begin{gathered} 60-120 \\ \mathrm{Nm} \end{gathered}$		0,09
	5,6				0,09
	8				0,18
	11				0,18
	16				0,37
	22				0,37
	32				0,75
	45				0,75
Output drive type A (thread TR 20x4 LH, flange size F10)					
			SAR 07.5 SAR Ex 07.5		SAR 07.5, SAR Ex 7.5
	4		$\begin{gathered} 30-60 \\ \mathrm{Nm} \end{gathered}$		0,045
	5,6				0,045
	8				0,09
	11				0,09
	16				0,18
	22				0,18
	32				0,37
	45				0,37

Accessories

2 TANDEM switches
Gearing for signalisation of position
Mechanical position indicator
Potentiometer 1x200 Ω
Electronic position transmitter RWG (potentiometer included), 4-20 mA, 2-wire
Electronic position transmitter RWG (potentiometer included), 4-20 mA, 3/4-wire
Inductive position transmitter IWG, 4-20 mA
AUMATIC - for continuous control (specification of accessories acc. to catalogue of producer)

Dimensions of actuators Auma

Normal execution

Version with AUMATIC

Ex version

Output shaft A, flange F10

Attachement yoke (4 columns)

Technical data

Type	rAB5	exrAB5
Marking in the valve's specification No.	EZG	$400 / 230 \mathrm{~V}$
Voltage	$400 / 230 \mathrm{~V} ; 230 \mathrm{~V}$	50 Hz
Frequency	See specification table	
Motor power	$3-$ position control or with signal $4-20 \mathrm{~mA}$	
Control	$25 \mathrm{Nm} \sim 12,5 \mathrm{kN} ; 30 \mathrm{Nm} \sim 15 \mathrm{kN}$	
Nominal force	Acc. to valve's stroke $16,25,40,63,100 \mathrm{~mm}$	
Stroke	IP 66	IP 65
Enclosure	-25 to $80^{\circ} \mathrm{C}$	Acc. to used valve
Process medium max. temperature	90% tropical version 100% with condensation)	
Ambient temperature range	$16-18 \mathrm{~kg}$	16 kg
Ambient humidity limit		
Weight		

Specification of actuators

								XX	X	AB5	A	X	XXX
Execu				Non-	plosive			ex					
				Norm									
Duty				Cont					r				
Actua	s size									AB5			
Outpu	ive typ	(thr	R 20x4 L	flange							A		
			rAB5				exrAB5						
			exrAB5		400/230V	230 V	400/230V						
틀	2,5			3	0,09	0,09	0,09					2,5	
	5	근		근	0,12	0,12	0,12					5	
$\stackrel{\otimes}{\otimes}$	7,5				0,09	0,09	0,09					7,5	
\%	10	. 음	10-30	ob	0,12	0,12	0,18					10	
䓂	15	을	Nm	-	0,18	0,18	0,18					15	
若	20			$\stackrel{0}{0}$	0,18	0,18	0,37					20	
\bigcirc	30				0,37	0,37	0,37					30	
	40				0,37	0,37	0,37					40	
				Pote	meter 1×10								F
Acce				Doub	potentiome								FF
				Elect	ic transmitt	-20							ESM21
				Posi	er ACTUMATI	R							CMR

Dimensions of actuator ...AB5
Actuator...AB5

Øutput shaft type A, flange F10
Attachement yoke (4 columns)

Electric actuators
 ...AB8 Schiebel

Technical data

Type	rAB8	exrAB8
Marking in valve's specification No.	EZK	EZL
Voltage	400 / $230 \mathrm{~V} ; 230 \mathrm{~V}$	400 / $230 \mathrm{~V} ; 230 \mathrm{~V}$
Frequency	50 Hz	
Motor power	See specification table	
Control	3 - position or with signal of 4-20 mA	
Nominal force	60 Nm	
Stroke	25 mm	
Enclosure	IP 66	IP 65
Process medium max. temp.	Acc. to used valve	
Ambient temperature range	-25 to $80^{\circ} \mathrm{C}$	-20 to $40^{\circ} \mathrm{C}$
Ambient temperature limit	90% (tropical version 100% with condensation)	
Weight	24 kg	20 kg

Specification of actuator

Dimensions of actuators ...AB8

Output shaft type A, flange F10

Attachement yoke (4 columns) * Data in parentheses apply to DN 250 only

Pneumatic actuators Foxboro

Technical data

Accessories

Electropneumatic positioner (analogous) type SRI 990

Electropneumatic positioner (inteligent) type SRD 991

Electropneumatic positioner (digital) type SRD 991 - D

Pneumatic positioner type SRP 981
Signalisation switches type SGE 985
Air set type A 3420
Electropneumatic positioner type SRI 986

Operating conditions

Pneumatic actuators FOXBORO can operate with extremely high ambient temperatures with unique resistance to shock loads. They excel with resistance to vibrations and reached 10^{6} of cycles in operation. It is possible to deliver the actuator with both fail to open and fail to close function, possibly with a position blocking (air lock) upon feeding pressure air supply failure. Various accessories can be delivered together with the actuator.

Device with electric input of 4 to 20 mA and outlet of controlling air into actuator. It is adjusted by switches and potentiometers.
Device with electric input of 4 to 20 mA and outlet of controlling air into actuator. It is adjusted by PC and special software. Comunication HART, Fieldbus Foundation, PRØFIBUS. Device with electric input of 4 to 20 mA and outlet of contr. air into actuator. It is adjusted by a local keyboard and diods, possibly on display.
Device with pneumatic input of 20 to 100 kPa to control the pneumatic actuators with pneumatic control signal
Adjustable end position switches
Reduces control air pressure to a value requied
Analog positioner with input signal of 4 (0) - 20 mA

Direct and indirect functions

Direct function ensures that actuator's stem retracts upon control air supply failure (valve opens). Indirect function ensures that actuator's stem extends upon control air supply failure (valve closes).

Dimensions and weights of Foxboro actuators

DN	Actuator	H	A	B	G	M	V 1	V 2	V 3	Ds	$\mathrm{m}[\mathrm{kg}]$	$\mathrm{m} \mathrm{(+HW)}$
25	$\mathrm{P} \varnothing 700$	16	405	150	$\mathrm{M} 10 \times 1$	160	278	227	600	350	65	82
50	$\mathrm{P} \varnothing 700$	25	405	150	$\mathrm{M} 16 \times 1,5$	160	278	227	600	350	65	82
100	$\mathrm{P} \varnothing 1502$	40	550	150	$\mathrm{M} 20 \times 1,5$	160	324	409	--	--	148	---
125,150	$\mathrm{P} \varnothing 1502$	63	550	150	$\mathrm{M} 20 \times 1,5$	160	337	409	---	---	148	---

Note: Face to face dimensions [mm] Missing data to be given by producer.

Valve specification No. of Foxboro actuators

Maximal permissible overpressures [MPa]

Material	PN	Temperature [${ }^{\circ} \mathrm{C}$]										
		100	150	200	250	300	350	400	450	500	550	600
$\begin{aligned} & \text { Cast steel } \\ & 1.0619 \end{aligned}$	16	1.36	1.27	1.14	1.04	0.94	0.88	0.84	---	---	---	---
	25	2.13	1.98	1.78	1.62	1.47	1.37	1.32	---	---	---	---
	40	3.41	3.17	2.84	2.60	2.35	2.19	2.11	---	---	---	---
	63	5.37	4.99	4.48	4.09	3.71	3.45	3.33	---	---	---	---
	100	8.53	7.92	7.11	6.50	5.89	5.48	5.28	---	---	---	---
	160	13.6	12.7	11.4	10.4	9.40	8.80	8.40	---	---	---	---
	250	21.3	19.8	17.8	16.2	14.7	13.7	13.2	---	---	---	---
	320	27.2	25.4	22.8	20.8	18.8	17.6	16.8	---	---	---	---
	400	34.1	31.7	28.4	26.0	23.5	21.9	21.1	---	---	---	---
Alloy steel1.7357	16	1.63	1.58	1.49	1.43	1.33	1.23	1.15	1.07	0.89	0.35	---
	25	2.54	2.48	2.33	2.23	2.08	1.93	1.80	1.67	1.39	0.55	---
	40	4.07	3.96	3.74	3.57	3.33	3.09	2.89	2.67	2.23	0.88	---
	63	6.41	6.24	5.88	5.63	5.24	4.86	4.55	4.20	3.51	1.39	---
	100	10.17	9.90	9.34	8.93	8.32	7.71	7.22	6.67	5.57	2.21	---
	160	16.3	15.8	14.9	14.3	13.3	12.3	11.5	10.7	8.90	3.50	---
	250	25.4	24.8	23.3	22.3	20.8	19.3	18.0	16.7	13.9	5.50	---
	320	32.6	31.6	29.8	28.6	26.6	24.6	23.0	21.4	17.8	7.00	---
	400	40.7	39.6	37.4	35.7	33.3	30.9	28.9	26.7	22.3	8.80	---
Stainless steell 1.4931	16	1.63	1.58	1.54	1.46	1.35	1.27	1.15	1.07	0.89	0.79	0.43
	25	2.54	2.48	2.41	2.29	2.11	1.98	1.80	1.67	1.39	1.23	0.67
	40	4.07	3.96	3.85	3.66	3.38	3.18	2.89	2.67	2.23	1.97	1.06
	63	6.41	6.24	6.06	5.76	5.33	5.00	4.55	4.20	3.51	3.10	1.68
	100	10.17	9.90	9.63	9.14	8.46	7.94	7.22	6.67	5.57	4.92	2.26
	160	16.3	15.8	15.4	14.6	13.5	12.7	11.5	10.7	8.90	7.90	4.30
	250	25.4	24.8	24.1	22.9	21.1	19.8	18.0	16.7	13.9	12.3	6.70
	320	32.6	31.6	30.8	29.2	27.0	25.4	23.0	21.4	17.8	15.8	8.60
	400	40.7	39.6	38.5	36.6	33.8	31.8	28.9	26.7	22.3	19.7	10.6

Notes:

