Control valves G 45 ...


## Kv coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.
Because of eventual minus tolerance $10 \%$ of $\mathrm{Kv}_{\text {vo }}$ against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

$$
\text { Kvs = } 1.2 \div 1.3 \mathrm{Kv}
$$

It is necessary to take into account to which extent $Q_{\text {max }}$ involve "precautionary additions" that could result in valve oversizing.

Relations of Kv calculation

|  |  | Pressure drop $\begin{gathered} p_{2}>p_{1} / 2 \\ \Delta p<p_{1} / 2 \end{gathered}$ | $\begin{gathered} \text { Pressure drop } \\ \Delta p \geqq p_{1} / 2 \\ p_{2} \leqq p_{1} / 2 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Kv}=$ | Liquid | $\frac{Q}{100} \sqrt{\frac{\rho_{1}}{\Delta p}}$ |  |
|  | Gas | $\frac{Q_{n}}{5141} \sqrt{\frac{\rho_{n} \cdot T_{1}}{\Delta p \cdot p_{2}}}$ | $\frac{2 . Q_{n}}{5141 \cdot p_{1}} \sqrt{p_{n} \cdot T_{1}}$ |
|  | Superh. steam | $\frac{Q_{m}}{100} \sqrt{\frac{V_{2}}{\Delta p}}$ | $\frac{Q_{m}}{100} \sqrt{\frac{2 v}{p_{1}}}$ |
|  | Sat. steam | $\frac{Q_{m}}{100} \sqrt{\frac{V_{2} \cdot x}{\Delta p}}$ | $\frac{Q_{m}}{100} \sqrt{\frac{2 v \cdot x}{p_{1}}}$ |

## Above critical flow of vapours and gases

When pressure ratio is above critical ( $p_{2} / p_{1}<0.54$ ), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness and then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

## Cavitation

Cavitation is a phenomenon when there are steam bubbles creating and vanishing in shocks - generally at the narrowest section of flowing due to local pressure drop. This event expressively cuts down service life of inner parts and can result in creation of unpleasant vibrations and noisiness. In control valves it can happen on condition that

$$
\left(p_{1}-p_{2}\right) \geqq 0.6\left(p_{1}-p_{s}\right)
$$

Valve differential pressure should be set the way so that neither any undesired pressure drop causing cavitation can occur, nor liquid-steam(wet steam) mixture can create. Otherwise it must be taken into account when calculating Kv value. If the creation of cavitation still threatens, it is necessary to use a multi-step pressure reduction.

## Valve flow characteristics

$\mathrm{Kv} / \mathrm{Kv}_{1}$


L - linear characteristic

$$
\mathrm{Kv} / \mathrm{Kv}_{100}=0.0183+0.9817 \cdot\left(\mathrm{H} / \mathrm{H}_{100}\right)
$$

R - equal-percentage characteristic (4-percentage) $\mathrm{Kv} / \mathrm{Kv}_{100}=0.0183 . \mathrm{E}^{(4 .+ \text { нH }} 100$ )

## Dimensions and units

| Marking | Unit | Name of dimension |
| :---: | :---: | :---: |
| Kv | $\mathrm{m}^{3} / \mathrm{hour}$ | Flow coefficient under conditions of units of flow |
| $\mathrm{KV}_{100}$ | $\mathrm{m}^{3} / \mathrm{hour}$ | Flow coefficient at nominal stroke |
| Kvs | $\mathrm{m}^{3} / \mathrm{hour}$ | Valve nominal flow coefficient |
| Q | $\mathrm{m}^{3} / \mathrm{hour}$ | Flow rate in operating conditions ( $\mathrm{T}_{1}, \mathrm{p}_{1}$ ) |
| $\mathrm{Q}_{\mathrm{n}}$ | $\mathrm{Nm}^{3} /$ hour | Flow rate in normal conditions ( $0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$ ) |
| $\mathrm{Q}_{\mathrm{m}}$ | kg/hour | Flow rate in operating conditions ( $\mathrm{T}_{1}, \mathrm{p}_{1}$ ) |
| $\mathrm{p}_{1}$ | MPa | Upstream absolute pressure |
| $\mathrm{p}_{2}$ | MPa | Downstream absolute pressure |
| $\mathrm{p}_{\mathrm{s}}$ | MPa | Absolute pressure of saturated steam at given temperature ( $T_{1}$ ) |
| $\Delta \mathrm{p}$ | MPa | Valve differential pressure ( $\Delta \mathrm{p}=\mathrm{p}_{1}-\mathrm{p}_{2}$ ) |
| $\rho_{1}$ | $\mathrm{kg} / \mathrm{m}^{3}$ | Process medium density in operating conditions ( $T_{1}, \mathrm{p}_{1}$ ) |
| $\rho_{n}$ | $\mathrm{kg} / \mathrm{Nm}^{3}$ | Gas density in normal conditions ( $0^{\circ} \mathrm{C}, 0.101 \mathrm{MPa}$ ) |
| $\mathrm{V}_{2}$ | $\mathrm{m}^{3} / \mathrm{kg}$ | Specific volume of steam when temperature $T_{1}$ and pressure $p_{2}$ |
| v | $\mathrm{m}^{3} / \mathrm{kg}$ | Specific volume of steam when temperature $T_{1}$ and pressure $p_{1} / 2$ |
| $\mathrm{T}_{1}$ | K | Absolute temperature at valve inlet ( $T_{1}=273+t_{1}$ ) |
| $\underline{x}$ | 1 | Proportionate weight volume of saturated steam in wet steam |

## Diagram for the valve Kvs value specification according to the required flow rate of water $Q$ and the valve differential pressure $\Delta p$



The diagram serves to specify the valve Kvs value regarding to the required flow rate of water at a given differential pressure. It can be also used for finding out the differential pressure value of the existing valve in behaviour with the flow rate. The diagram apllies to water with the density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
For the value $\mathrm{Q}=\mathrm{q} .10^{n}$, it is necessary to calculate with $\mathrm{Kvs}=\mathrm{k} .10^{n}$. Example: water flow rate of $16.10^{-1}=1,6 \mathrm{~m}^{3} /$ hour corresponds to $K v=2,5=25.10$ when differential pressure 40 kPa .

## Valve complete specification No. for ordering G 45

|  |  | X XX | XXX | X XXX | XXX | XXX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Valve | Control valve | G |  |  |  |  |
| 2. Series | Lever control valve, double-seated | 45 |  |  |  |  |
| 3. Flow direction | Straight - through |  | 1 |  |  |  |
| 4. Connection | Flanged |  | 1 |  |  |  |
|  | Weld ends |  | 2 |  |  |  |
| 5. Actuating | Adjusted for remote control |  | 5 |  |  |  |
| 6. Material | Alloy steel 1.7357 |  |  | 2 |  |  |
|  | Carbon steel 1.0619 |  |  | 5 |  |  |
| 7. Nominal pressure PN | Acc. to the valve execution |  |  | XXX |  |  |
| 8. Max. operating temp. ${ }^{\circ} \mathrm{C}$ | Acc. to the valve execution |  |  |  | XXX |  |
| 9. Nominal size DN | Acc. to the valve execution |  |  |  |  | XXX |



# Lever control valves DN 150 to 400, PN 16 to 100 

## Description

The valve is double-seated, lever-actuated designed to be actuated with an electric or a pneumatic actuator possibly with an electric or a hydraulic cylinder. It is also possible to use linear or rotative actuator. Its control plug is always designed according to the parameters specified in the order and according to the required type of flow characteristic.
The valves can be delivered with lever actuators of the following producer: ZPA Pečky - Modact MPS, Modact Control MPS and Modact Variant MPR, possibly with linear actuators ZPA Pečky, Regada Prešov and rotative actuators Auma or Schiebel. The connection stem between the valve lever and the actuator is not a subject of the delivery unless it is ordered.

## Application

The valve serves as a control, reducing or by-pass element with indirect, possilbly with direct actuating. The max. permissible operating pressures acc. to EN 12516-1 see page 14 of this catalogue. The intention to use the valve for higher temperatures must be agreed upon with the producer. The control valve's proper function depends on the sizing and execution of the control station, therefore the valve design and its specification is recommended to be carried out together with the producer.

## Process media

The valves are designed to regulate the flow and pressure of liquids, possibly of vapours and gases e.g. water, steam and other media compatible with material of material of the valve inner parts. The valve max. differential pressure value is 4,0 MPa with respect to the pressure nominal and concrete conditions of operation (ratio $p_{1} / p_{2}$, creation of cavitation, above critical flow etc.)

## Installation

The valve can be piped only in a horizontal pipeline with vertically positioned stem and the valve lever positioned up above the valve body. The medium flow direction shall corespond to the arrows indiciated on the valve body. The lever is mounted on the right side from the medium flow direction unless it is required otherwise.

## Technical data

| Series | G 45115240 | G 451152100 | G 45115516 | G 45115525 | G 45115540 | G 45115564 | G 451155100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type of valve | Lever control valve, flanged, straight-through,double-seated |  |  |  |  |  |  |
| Nominal size range | 200 | 150 | 200, 300, 400 | 200, 400 | 200, 400 | 150 | 150 |
| Nominal pressure | 40 | 100 | 16 | 25 | 40 | 64 | 100 |
| Body material | Alloy steel 1.7357 |  | Carbon steel 1.0619 |  |  |  |  |
| Operating temp. range | -20 to $550^{\circ} \mathrm{C}$ |  | -20 to $400^{\circ} \mathrm{C}$ |  |  |  |  |
| Connection* | ČSN 131213 ČSN 131215 ČSN 131211 ČSN 131212 Č̌SN 131213 ČSN 131214 Č̌SN 131215 |  |  |  |  |  |  |
| Type of trim | seat / seat cage - contoured plug |  |  |  |  |  |  |
| Flow characteristic | Linear, equal-percentage acc. to ČSN EN 60 534-1 (4/1997) |  |  |  |  |  |  |
| Flow area range $\mathrm{Fs}\left[\mathrm{cm}^{2}\right.$ ] | 17-200 | 10-110 | 17-408 | 17-408 | 17-408 | 10-110 | 10-110 |
| Kvs values range | 76,5-900 | 45-495 | 76,5-1836 | 76,5-1836 | 76,5-1836 | 45-495 | 45-495 |
| Leakage rate | Class III acc. to ČSN EN 1349 (5/2001) |  |  |  |  |  |  |

${ }^{*}$ ) mentioned ČSN are from 1963. After the agreement with the producer, it is possible to make the connection acc. to CSN 131060 (7/1995) or ČSN EN 1092-1 (4/2002).

Dimensions and weights for the type G 45115 DN 150 to 300


## Dimensions and weights for the type G 45115 DN 400

| Type |  | $\begin{aligned} & \circ \\ & \stackrel{0}{5} \\ & \stackrel{0}{5} \\ & \stackrel{6}{4} \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DN | [mm] | 400 | 400 | 400 |
| D | [mm] | 400 | 400 | 400 |
| $\underline{L}$ | [mm] | 900 | 900 | 900 |
| L | [mm] | 856 | 856 | 856 |
| $\mathrm{L}_{2}$ | [mm] | 306 | 306 | 306 |
| $\sim \vee$ | [mm] | 910 | 910 | 910 |
| $\sim V_{1}$ | [mm] | 360 | 360 | 360 |
| $\mathrm{D}_{1}$ | [mm] | 580 | 610 | 655 |
| $\mathrm{D}_{2}$ | [mm] | 525 | 550 | 585 |
| $\mathrm{D}_{3}$ | [mm] | 490 | 505 | 535 |
| A | [mm] | 280 | 280 | 280 |
| f | [mm] | 4 | 4 | 4 |
| a | [mm] | 50 | 50 | 50 |
| d | [mm] | 30 | 33 | 40 |
| n | [mm] | 16 | 16 | 16 |
| Fs | [ $\mathrm{cm}^{2}$ ] | 80-408 | 80-408 | 80-408 |
| Kvs | [ $\mathrm{m}^{3} \mathrm{~h}$ ] | 360-1100 | 360-1100 | 360-1100 |
| m | [kg] | 1023 | 1023 | 1023 |




## Control valves DN 300, PN 40

## Description

The valve is double-seat, lever-actuated, designed to be actuated with an electric actuator, possibly with an electric or a hydraulic cylinder. It is also possible to use linear or rotative actuator. Its control plug is always designed according to the parameters specified in the order and according to the required type of flow characteristic.he valves can be delivered with lever actuators of the following producer: ZPA Pečky Modact MPS, Modact Control MPS and Modact Variant MPR, possibly with linear actuators ZPA Pečky, Regada Prešov and rotative actuators Auma or Schiebel. The connection stem between the valve's lever and the actuator is not a subject of the delivery unless it is ordered.

## Application

The valve serves as a control, reduction or a by-pass valve with indirect or direct actuating. The max. permissible operating pressures acc. to EN 12 516-1 see page 14 of this catalogue. The intention to use the valve for higher temperatures must be agreed upon with the producer. The control valve proper function depends on the sizing and execution of the control station, therefore the valve design and its specification is recommended to be carried out together with the producer.

## Process media

The valves are designed to regulate the flow and pressure of liquids, possibly of vapours and gases e.g. water, steam and other media compatible with material of the valve inner parts. The valve max. differential pressure value is $4,0 \mathrm{MPa}$ with respect to the pressure nominal and concrete conditions of operation (ratio $p_{1} / p_{2}$, creation of cavitation, above critical flow etc.)

## Installation

The valve can be piped only in a horizontal pipeline with vertically positioned stem and the valve lever positioned up above the valve body. The medium flow direction shall corespond to the arrows indiciated on the valve body. The lever is mounted on the right side from the medium flow direction unless it is required otherwise.

## Technical data

| Series | G 45125240 | G 45125540 |
| :---: | :---: | :---: |
| Type of valve | Control valve, flanged, straight-through, double-seated |  |
| Nominal size | 300 |  |
| Nominal pressure | 40 |  |
| Body material | Alloy steel 1.7357 | Carbon steel 1.0619 |
| Operating temperature range | -20 to $450^{\circ} \mathrm{C}$ | -20 to $400^{\circ} \mathrm{C}$ |
| Connection * | ČSN 131070 (1984) |  |
| Type of trim | Seat - contoured plug |  |
| Flow characteristic | Linear, equal-percentage acc. to ČSN EN 60 534-1 (4/1997) |  |
| Flow area range Fs [ $\mathrm{cm}^{2}$ ] | 40-175 |  |
| Kvs values range | 180-787,5 |  |
| Leakage rate | Class III acc. to ČSN EN 1349 (5/2001) |  |
| *) After the agreement with the producer, it is possible to make the connection acc. to the valid ČSN 131075 (3/1991) ČSN EN 12627 (8/2000) |  |  |

Dimensions and weights for G 45125 DN 300

| Type |  | $$ | $$ |
| :---: | :---: | :---: | :---: |
| DN | [mm] | 300 | 300 |
| D | [mm] | 324 | 324 |
| L | [mm] | 900 | 900 |
| -V | [mm] | 660 | 494 |
| $\sim V_{1}$ | [mm] | 265 | 265 |
| t | [mm] | 8 | 8 |
| $\underline{L}$ | [mm] | 440 | --- |
| $\mathrm{L}_{2}$ | [mm] | 110 | --- |
| A | [mm] | 240 | --- |
| z | [mm] | --- | 60 |
| Fs | [ $\mathrm{cm}^{2}$ ] | 40-175 | 40-175 |
| Kvs | [ $\mathrm{m}^{3} / \mathrm{h}$ ] | 180-787,5180-787,5 |  |
| m | [kg] | 375 | 300 |



G 45125240



52262
52263
52264

## Electric actuators Modact MPS and Modact MPS Control ZPA Pečky

## Technical data

| Type | Modact MPS | Modact MPS Control |
| :--- | :---: | :---: |
| Voltage | $3 \times 230 \mathrm{~V} / 400 \mathrm{~V} \pm 6 \%$ |  |
| Frequency | 50 Hz |  |
| Motor power | See specification table |  |
| Control | $2-$ position or $3-$ position control |  |
| Torgue range | 160 to 1250 Nm |  |
| Travel range | $60^{\circ}$ to $160^{\circ}$ |  |
| Enclosure | IP 55 |  |
| Process media max. temperature | Acc. to used valve |  |
| Ambient temperature range | -25 to $55^{\circ} \mathrm{C}$ |  |
| Ambient humidity range | $10-100 \%$ with condensation |  |
| Weight | max. 120 kg |  |

## Wiring diagram of actuator Modact MPS

Execution - terminal board
Position transmitter : capacity CPT 11/A 4 - 20 mA
Position transmitter : resistance $2 \times 100 \Omega$


## Wiring diagram of actuator Modact MPS Control

With current transmitter, built-in contactor combination, heat reley, positioner ZP2.RE and dynamic brake BAM-001.


SQ1 (MO)
SQ2 (MZ)
SQ3 (PO)
SQ5 (PZ)
SQ4 (SO)
SQ6 (SZ)
EH
CPT1
BAM-001
KO
KZ
F
SA1
SA2
BQ1, BQ2
ZP2.RE
GS
M1~
M3~
C
T
S
Z
torgue switch in "opening" direction torgue switch in "closing" direction limit switch in "opening" direction limit switch in "closing" direction signalisation switch in "opening" direction signalisation switch in "closing" direction heaters $2 \times$ TR 551 10k/A capacity position transmitter CPT1/A4-20 mA dynamic brake contactor in "opening" direction contactor in "closing" direction heat reley control switch "local -remote" switch "open - close" position transmitter $2 \times 100 \Omega$ micro-computer positioner power supply source for current ransmitter $230 \mathrm{~V} / 24 \mathrm{~V}$ one-phase motor inductive, three-phase motor motor capacitor mains transformer terminal board plug "KBNS"

## Specification for actuators Modact MPS and Modact MPS Control

| Basic equipment : |  | tor <br> itches MO, M hes PO, PZ |  | 2 hea 2 sign and | ers <br> alisation swit actuators w | es SO, SZ ut any trans | actuators tter | with CPT 1/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic technical data : |  |  |  |  |  |  |  |  |
| Tripping | Running |  | Electromotor |  |  |  | Specific | ion No.. |
| Type $\quad \begin{gathered}\text { torgue setting } \\ \text { range }[\mathrm{Nm}]\end{gathered}$ | $\begin{gathered} \text { time } \\ {\left[\mathrm{s} / 90^{\circ}\right]} \end{gathered}$ | Motor power [W] | Current to motor $\ln [\mathrm{A}]$ | Current to motor lz [A] | [I] | $\text { [ } \mathrm{kg} \text { ] }$ | Basic | Additional |
| MPS 32/16 | 16 |  |  |  |  |  |  | XX1X |
| MPS 32/32 160-320 | 32 | 180 | 0.57 | 1.82 | 3,4 | 70 | 52262 | XX2X |
| MPS 32/63 160-320 | 63 | 180 | ,57 | 1,02 | 3,4 | 70 | 52262 | XX3X |
| MPS 32/120 | 120 |  |  |  |  |  |  | XX4X |
| MPS 63/16 | 16 | 370 | 1,05 | 3,25 |  |  |  | XX1X |
| MPS 63/32 320 -630 | 32 |  |  |  | 10 | 120 | 52263 | XX2X |
| MPS 63/63 320-630 | 63 | 180 | 0,57 | 1,82 | 10 | 120 | 52263 | XX3X |
| MPS 63/120 | 120 |  |  |  |  |  |  | XX4X |
| MPS 125/16 | 16 |  |  |  |  |  |  | XX1X |
| MPS 125/32 630 | 32 | 370 | 1,05 | 3,25 | 10 | 120 | 52264 | XX2X |
| MPS 125/63 | 63 |  |  |  | 10 | 120 | 5226 | XX3X |
| MPS 125/120 | 120 | 180 | 0,57 | 1,82 |  |  |  | XX4X |
| Execution, electric conn | ection : |  |  |  |  |  |  |  |
| Via terminal board |  |  |  |  |  |  |  | 6XXX |
| With conector KBSN (for | Modact | PS only) |  |  |  |  |  | 7XXX |
|  |  |  |  |  |  |  | $60^{\circ}$ | X1XX |
| Operating travel -mech | ically co | nected with | ntrolled | with lever | nd flange | stops | $90^{\circ}$ | X2XX |
| eleme |  |  |  | with lever | 俍 flange | stops | $120^{\circ}$ | X3XX |
|  |  |  |  |  |  |  | $160^{\circ}$ | X4XX |
|  |  | Resistance | osition tran | mitter $2 \times 10$ | $\Omega$ |  |  | XXX1 |
| Additional equipment |  | Execution w | hout any pos | sition transm | itter |  |  | XXX0 |
| actuators Modact MPS |  | Current pos. | ransmitter | PT 1/A 4-20 | mA with buil | power sup | generator | XXX7 |
|  |  | Current pos. | ransmitter | PT 1/A 4-20 | mA wo. built | power supply | generator | XXX9 |
| Additional equipment fo |  |  | Completely positioner a | quipped with brake BAM | Without posi BAM and rev | er, with brake ble contactors | Without posit AM, with rev | ner and brake sible contactors |
|  |  |  | with BMO | without BMO | with BMO | without BMO | with BMO | without BMO |
| Without position trasnm | itter |  | --- | --- | XXXC | XXXL | XXXG | XXXR |
| Resistance position tra | smitter 2 | $\times 100 \Omega$ | --- | --- | XXXD | XXXM | XXXH | XXXS |
| CPT 1/A 4-20 mA with built-in | power sup | ly generator | --- | --- | XXXE | XXXN | XXXJ | XXXT |
| CPT 1/A 4-20 mA without bu | t-in power | upply generator | XXXA | XXXB | XXXF | XXXP | XXXK | XXXU |

## Dimensions of actuator Modact MPS and Modact MPS Control

|  | 52262 | 52263 | 52264 |
| :---: | :---: | :---: | :---: |
| A | 620 | 712 | 731 |
| B | 386 | 460 | 479 |
| C | 234 | 252 |  |
| D | $\square 200$ | $\square 250$ |  |
| E | 62 | 82 |  |
| $\mathrm{E}_{1}$ | 60 | 80 |  |
| F | 346 | 420 |  |
| G | 340 | 445 |  |
| $\mathrm{G}_{1}$ | 456 | 562 |  |
| $J$ | 120 | 145 |  |
| K | 70 | 100 |  |
| L | 90 | 110 |  |
| M | 140 | 200 |  |
| N | 41 | 60 |  |
| O | $\square 14$ | $\square 18$ |  |
| S | 56 | 70 |  |
| T | 4 | 7 |  |
| U | 25 | 30 |  |
| $X$ | 65 | 80 |  |
| Y | 41 | 55 |  |
| Z | 273 | 278 |  |
| d | $\square 40 \mathrm{~h} 8$ | $\square 50 \mathrm{~h} 8$ |  |
| $\mathrm{d}_{1}$ | $\mathrm{c}_{40 \mathrm{H} 7}$ | $\square 50 \mathrm{H} 7$ |  |
| $\mathrm{d}_{2}$ | 3x口20H8 | 3xa25H8 |  |
| b | $12 \mathrm{P9}$ | 16 Pg |  |
| h | 8 | 10 |  |
| e | 35 | 43,8 |  |

## Modact MPS



Lever


Modact MPS Control


|  | 52262 | 52263 | 52264 |
| :---: | :---: | :---: | :---: |
| A | 370 | 440 |  |
| B | 250 | 275 |  |

Base board - holes



## Electric actuators Modact Variant MPR ZPA Pečky

## Technical data

| Type | Modact Variant MPR |
| :--- | :---: |
| Voltage | $230 \mathrm{~V} \pm 6 \%$ |
| Frequency | 50 Hz |
| Motor power | 50 W |
| Control | Continuous |
| Torgue range | 250 to 4000 Nm |
| Travel range | $60^{\circ}$ to $160^{\circ}$ |
| Enclosure | IP 55 |
| Process media max. temperature | Acc. to used valve |
| Ambient temperature range | -25 to $55^{\circ} \mathrm{C}$ |
| Ambient humidity range | $10-100 \%$ with condensation |
| Weight | max. 282 kg |

## Wiring diagram of actuator



With current transmitter CPT1/A, without built-in power supply source


MZ

MO torgue switch in "opening" direction torgue switch for "closing" direction limit switch in "opening" direction limit switch in "closing" direction signalisation switch in "opening" direction signalisation switch in "closing" direction heaters
capacity position transmitter CPT1/A4-20mA
resistance position transmitter $2 \times 100 \Omega$ power supply source for current transmitter $230 \mathrm{~V} / 24 \mathrm{~V}$
induction, two-phase motor
capacitor
terminal board
plug "KBNS"

With current transmitter CPT1/A with built-in power supply source


Specification of actuator Modact Variant MPR

| Type | Nominal torgue [ Nm ] | Max. torgue [ $\mathrm{N} / \mathrm{m}$ ] | Running time range [ $\mathrm{sec} / 90^{\circ}$ ] | Electromotor |  |  | $\begin{gathered} \text { Oil } \\ \text { filling } \\ {[\mathrm{kg} \text { ] }} \end{gathered}$ | Weight [ kg ] | Specification No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | [W] | [ $\mu \mathrm{F}$ ] | $B F / R{ }^{\prime} F$ [A] |  |  | Basic | Additional |
| MPR 25-40 | 250-400 | 1400 | 10-19 | 50 | 8 | 0,6/0,6 | 4,4 | 104 | 52222 | XX0X |
| MPR 40-63 | 400-630 | 1750 | 14-30 |  |  |  |  |  |  | XX1X |
| MPR 63-100 | 630-1000 | 2650 | 30-55 |  |  |  |  |  |  | XX2X |
| MPR 100-200 | 1000-2000 | 4550 | 50-80 | 50 | 8 | 0,6/0,6 | 4,4 | 282 | 52223 | XX0X |
| MPR 160-300 | 1600-3000 | 5950 | 73-138 |  |  |  |  |  |  | XX1X |
| MPR 250-400 | 2500-4000 | 8940 | 130-195 |  |  |  |  |  |  | XX2X |
| Execution, electrical connection : |  |  |  |  |  |  |  |  |  |  |
| Via terminal board |  |  |  |  |  |  |  |  |  | 6XXX |
| With conector KBSN |  |  |  |  |  |  |  |  |  | 7XXX |
| Operating travel |  |  |  | $60^{\circ}$ for 52222 |  |  | $67,5^{\circ}$ for 52223 |  |  | X1XX |
|  |  |  |  | $90^{\circ}$ for 52222 |  |  | $90^{\circ}$ for 52223 |  |  | X2XX |
|  |  |  |  | $120^{\circ}$ for 52222 |  |  | $112,5^{\circ}$ for 52223 |  |  | X3XX |
|  |  |  |  | $160^{\circ}$ for 52222 |  |  | $157^{\circ}$ for 52223 |  |  | X4XX |
|  |  |  |  | $90^{\circ}$ for 52 222; direct connection. |  |  |  |  |  | X 5 XX |
| Additional electric equipment |  |  | Execution without position transmitter |  |  |  |  |  |  | XXX1 |
|  |  | V2 | Position resistance transmitter $2 \times 100 \Omega$ |  |  |  |  |  |  | XXX0 |
|  |  | CPT1+GS | Position current transmitter CPT 1/A 4-20 mA with built-in power supply generator |  |  |  |  |  |  | XXX7 |
|  |  | CPT1 | Position current transmitter CPT 1/A 4-20 mA wo. built-in power supply generator |  |  |  |  |  |  | XXX9 |
| Stem |  | with single stem |  |  | For export only |  |  |  |  | XXXX/3 |
|  |  | with double stem |  |  | For export only |  |  |  |  | XXXX/4 |

## Dimensions of actuator Modact Variant MPR

|  | 52222 | 52223 |
| :---: | :---: | :---: |
| A | 782 | 793 |
| B | 517 | 548 |
| C | 265 | 220 |
| D | -250 | $\square 300$ |
| E | 85 | 123 |
| $\mathrm{E}_{1}$ | 80 | 120 |
| F | 420 | 560 |
| G | 555 | 750 |
| J | 145 | 260 |
| K | 100 | 185 |
| L | 110 | --- |
| M | 200 | 200 |
| N | 57 | 33 |
| O | $\square 18$ | $\square 22$ |
| P | 40 | 55 |
| R | 170 | 400 |
| S | 70 | 180 |
| T | 7 | 11 |
| U | 30 | 36 |
| X | 80 | 130 |
| Y | 55 | 80 |
| Z | 278 | 490 |
| d | $\square 50 \mathrm{~h} 8$ | ᄃ90 h 8 |
| $\mathrm{d}_{1}$ | $\square 40 \mathrm{~h} 7$ | -90 h 7 |
| $\mathrm{d}_{2}$ | 3x口25H8 | 3x-40h8 |
| b | $16 \mathrm{P9}$ | 25 P9 |
| h | 10 | 14 |
| e | 43,8 | 81,3 |

Modact Variant MPR 52222


Lever


Base board - holes


Modact Variant MPR 52223


Lever


Base board - holes



## Electric actuators Modact MTR ZPA Křižík Prešov

## Technical data

| Type | Modact MTR |
| :--- | :---: |
| Voltage | 230 V |
| Frequency | $50 / 60 \mathrm{~Hz}$ |
| Motor power | 16 or 25 W |
| Control | 3 - pos. c. (in connection with NOTREP positioner - continuous) |
| Nominal force | $6.3,10,16,25 \mathrm{kN}$ |
| Travel | 12,5 to 100 mm |
| Enclosure | IP 54 (IP 65 on request) |
| Process medium max. temperature | Acc. to used valve |
| Ambient temperature range | -25 to $55^{\circ} \mathrm{C}$ |
| Ambient humidity limit | $90 \%$ (tropical version: $100 \%$ with condensation) |
| Weight | 27 to 31 kg |

## Wiring diagram of actuator

Execution - terminal board
Wiring diagram with resistance transmitter $2 \times 100 \Omega$


Wiring diagram with capacity transmitter 4-20 mA (with its source)


Wiring diagram with inductive transmitter (0) 4-20mA; 0-5 mA


SQ1 (MO) power switch in "opening" direction SQ2 (MZ) power switch in "closing" direction SQ3 (PO) limit switch in "opening" direction SQ4 (PZ) limit switch in "closing" direction SQ5 (SO) signalisation switch in "opening" direction SQ6 (SZ) signalisation switch in "closing" direction EH1, EH2 heaters $2 \times$ TR 551 10k/A
BC 2 resistance position transmitter $2 \times 100 \Omega$ BC3 inductive position transmitter (0) 4-20mA; 0-5mA BC4 capacity position transmitter 4-20 mA
C capacitor
X terminal board

## Specification of Modact MTR

| Electric actuator MTR, linear |  |  |  |  |  |  |  |  | 52420. | X | X | X | X | / | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Execution CX - as standard ( $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ), connection via terminal board |  |  |  |  |  |  |  |  |  | 0 |  |  |  |  |  |  |
| Execution T2-tropical ( $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, 100 \%$ condensation), connection via terminal board |  |  |  |  |  |  |  |  |  | 6 |  |  |  |  |  |  |
| Travel [mm] |  |  |  |  |  |  | 16 |  |  |  | 2 |  |  |  |  |  |
|  |  |  |  |  |  |  | 25 |  |  |  | 3 |  |  |  |  |  |
|  |  |  |  |  |  |  | 32 |  |  |  | 4 |  |  |  |  |  |
|  |  |  |  |  |  |  | 40 |  |  |  | 5 |  |  |  |  |  |
|  |  |  |  |  |  |  | 63 |  |  |  | 6 |  |  |  |  |  |
| Linear unit with acme thread $\operatorname{Tr} 26 \times 5$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6300 |  | 4000-6300 |  | 32 |  | 38-32 |  | 19000 |  |  | 0 |  |  |  |  |
|  | 4000 |  | 2500-4000 |  | 50 |  | 60-50 |  | 13000 |  |  | 1 |  |  |  |  |
|  | 10000 |  | 6300-10000 |  | 32 |  | 38-32 |  | 30000 |  |  | 2 |  |  |  |  |
|  | 6300 |  | 4000-6300 |  | 50 |  | 60-50 |  | 20000 |  |  | 3 |  |  |  |  |
| Linear unit with ball bolt K $25 \times 5$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 16000 |  | 10000-16000 |  | 32 |  | 38-32 |  | 39000 |  |  | 4 |  |  |  |  |
|  | 10000 |  | 6300-10000 |  | 50 |  | 60-50 |  | 30000 |  |  | 5 |  |  |  |  |
|  | 25000 |  | 10000-25000 |  | 32 |  | 38-32 |  | 55000 |  |  | 6 |  |  |  |  |
|  | 16000 |  | 10000-16000 |  | 50 |  | 60-50 |  | 40000 |  |  | 7 |  |  |  |  |
|  | 10000 |  | 6300-10000 |  | 63 |  | 75-63 |  | 39000 |  |  | 8 |  |  |  |  |
|  | 6300 |  | 4000-6300 |  | 100 |  | 120-100 |  | 29000 |  |  | 9 |  |  |  |  |
| Transmitter |  |  | Without transmitter |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
|  |  |  | Resistance | $2 \times 100 \Omega$ |  |  |  |  |  |  |  |  | 1 |  |  |  |
|  |  |  | $1 \times 2000 \Omega$ |  |  |  | 2 |  |  |  |  |  |  |
|  |  |  | $2 \times 2000 \Omega$ |  |  |  | 3 |  |  |  |  |  |  |
|  |  |  | $1 \times 2000 \Omega+1 \times 100 \Omega$ |  |  |  | 4 |  |  |  |  |  |  |
|  |  |  | Inductive [mA] | (0) 4-20 |  |  |  |  |  |  |  |  | 5 |  |  |  |
|  |  |  | 0-5 |  |  |  | 6 |  |  |  |  |  |  |
|  |  |  | Capacity [mA] | 4-20 (with its generator) |  |  |  |  |  |  |  |  | 7 |  |  |  |
|  |  |  | 4-20 (without its generator) |  |  |  | 8 |  |  |  |  |  |  |
|  |  |  |  |  | Columns UNL |  |  |  |  |  |  |  |  |  |  | 7 |  |
| Special mechanical connection |  |  |  | Columns Č. Třebová |  |  |  |  |  |  |  |  |  |  | 8 |  |
|  |  |  |  | 2 signalisation switches SQ5, SQ6 |  |  |  |  |  |  |  |  |  |  |  | P |

1) Switching-off linear force is set to nominal value with tolerance of $+30 \%$.
2) Measured linear force with motor running into short-circuit state with voltage of 230 V on position controller.

## Dimensions of Modact MTR



|  | With acme <br> thread |  | With ball <br> bolt |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Columns ČT | 130 | 378 | 707 | 130 | 400 | 729 |
| Columns UNL | 74 | 320 | 649 | 74 | 344 | 673 |

Detail of coupling


Maximal permissible overpressures acc. to EN 12 516-1 [MPa]

| Material | PN | Temperature [ ${ }^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 |
| Cast steel 1.0619 | 16 | 1.14 | 1.04 | 0.94 | 0.88 | 0.84 | --- | --- | --- |
|  | 25 | 1.78 | 1.62 | 1.47 | 1.37 | 1.32 | --- | --- | --- |
|  | 40 | 2.84 | 2.60 | 2.35 | 2.19 | 2.11 | --- | --- | --- |
|  | 63 | 4.48 | 4.09 | 3.71 | 3.45 | 3.33 | --- | --- | --- |
|  | 100 | 7.11 | 6.50 | 5.89 | 5.48 | 5.28 | --- | --- | --- |
| Alloy steel 1.7357 | 40 | 3.74 | 3.57 | 3.33 | 3.09 | 2.89 | 2.67 | 5.57 | 2.21 |
|  | 100 | 9.34 | 8.93 | 8.32 | 7.71 | 7.22 | 6.67 | 8.90 | 3.50 |

Notes:

## Notes:

