Control valves G 45 ...

Ky coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.

Because of eventual minus tolerance 10% of Kv₁₀₀ against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

$$Kvs = 1.2 \div 1.3 Kv$$

It is necessary to take into account to which extent $Q_{\mbox{\tiny mex}}$ involve "precautionary additions" that could result in valve oversizing.

Relations of Ky calculation

		Pressure drop	Pressure drop		
		$p_2 > p_1/2$ $\Delta p < p_1/2$	$\Delta p \ge p_1/2$		
		$\Delta p < p_1/2$	$p_2 \leq p_1/2$		
	Liquid	$\frac{Q}{100}\sqrt{\frac{\rho_1}{\Delta p}}$			
K., -	Gas	$\frac{Q_n}{5141}\sqrt{\frac{\rho_n.T_1}{\Delta p.p_2}}$	$\frac{2.Q_{n}}{5141.p_{1}}\sqrt{\rho_{n}.T_{1}}$		
Kv =	Superh. steam	$\frac{Q_{m}}{100}\sqrt{\frac{v_{2}}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v}{p_1}}$		
	Sat. steam	$\frac{Q_m}{100}\sqrt{\frac{v_2.x}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v.x}{p_1}}$		

Above critical flow of vapours and gases

When pressure ratio is above critical ($p_2/p_1 < 0.54$), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness and then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

Cavitation

Cavitation is a phenomenon when there are steam bubbles creating and vanishing in shocks - generally at the narrowest section of flowing due to local pressure drop. This event expressively cuts down service life of inner parts and can result in creation of unpleasant vibrations and noisiness. In control valves it can happen on condition that

$$(p_1 - p_2) \ge 0.6 (p_1 - p_3)$$

Valve differential pressure should be set the way so that neither any undesired pressure drop causing cavitation can occur, nor liquid-steam(wet steam) mixture can create. Otherwise it must be taken into account when calculating Kv value. If the creation of cavitation still threatens, it is necessary to use a multi-step pressure reduction.

Valve flow characteristics

L - linear characteristic

 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})$

R - equal-percentage characteristic (4-percentage) $Kv/Kv_{100} = 0.0183 \cdot E^{(4-HH_{100})}$

Dimensions and units

Marking	Unit	Name of dimension
Kv	m³/hour	Flow coefficient under conditions of units of flow
Kv ₁₀₀	m³/hour	Flow coefficient at nominal stroke
Kvs	m³/hour	Valve nominal flow coefficient
Q	m³/hour	Flow rate in operating conditions (T, p)
Q,	Nm³/hour	Flow rate in normal conditions (0 °C, 0.101 MPa)
Q _n Q _m	kg/hour	Flow rate in operating conditions (T, p)
p ₁	MPa	Upstream absolute pressure
p ₂	MPa	Downstream absolute pressure
p _s	MPa	Absolute pressure of saturated steam at given temperature (T ₁)
Δρ	MPa	Valve differential pressure ($\Delta p = p_1 - p_2$)
ρ_1	kg/m³	Process medium density in operating conditions (T ₁ , p ₂)
ρ_n	kg/Nm³	Gas density in normal conditions (0 °C, 0.101 MPa)
V_2	m³/kg	Specific volume of steam when temperature T ₁ and pressure p ₂
V	m³/kg	Specific volume of steam when temperature T _i and pressure p _i /2
T ₁	K	Absolute temperature at valve inlet (T ₁ = 273 + t ₁)
х	1	Proportionate weight volume of saturated steam in wet steam

Diagram for the valve Kvs value specification according to the required flow rate of water Q and the valve differential pressure Δp

The diagram serves to specify the valve Kvs value regarding to the required flow rate of water at a given differential pressure. It can be also used for finding out the differential pressure value of the existing valve in behaviour with the flow rate. The diagram apllies to water with the density of 1000 kg/m³.

For the value Q = $q \cdot 10^\circ$, it is necessary to calculate with Kvs = $k \cdot 10^\circ$. Example: water flow rate of 16 $\cdot 10^\circ$ = 1,6 m³/hour corresponds to Kv = 2,5 = 25. 10 when differential pressure 40kPa.

Valve complete specification No. for ordering G 45

		XXX	XXX.	- X XXX	/ XXX	- XXX
1. Valve	Control valve	G				
2. Series	Lever control valve, double-seated	45				
3. Flow direction	Straight - through		1			
4. Connection	Flanged		1			
	Weld ends		2			
5. Actuating	Adjusted for remote control		5			
6. Material	Alloy steel 1.7357			2		
	Carbon steel 1.0619			5		
7. Nominal pressure PN	Acc. to the valve execution			XXX		
8. Max. operating temp.° C	Acc. to the valve execution				XXX	
9. Nominal size DN	Acc. to the valve execution					XXX

Lever control valves DN 150 to 400. PN 16 to 100

Description

The valve is double-seated, lever-actuated designed to be actuated with an electric or a pneumatic actuator possibly with an electric or a hydraulic cylinder. It is also possible to use linear or rotative actuator. Its control plug is always designed according to the parameters specified in the order and according to the required type of flow characteristic.

The valves can be delivered with lever actuators of the following producer: ZPA Pečky - Modact MPS, Modact Control MPS and Modact Variant MPR, possibly with linear actuators ZPA Pečky, Regada Prešov and rotative actuators Auma or Schiebel. The connection stem between the valve lever and the actuator is not a subject of the delivery unless it is ordered.

Application

The valve serves as a control, reducing or by-pass element with indirect, possilbly with direct actuating. The max. permissible operating pressures acc. to EN 12 516-1 see page 14 of this catalogue. The intention to use the valve for higher temperatures must be agreed upon with the producer. The control valve's proper function depends on the sizing and execution of the control station, therefore the valve design and its specification is recommended to be carried out together with the producer.

Process media

The valves are designed to regulate the flow and pressure of liquids, possibly of vapours and gases e.g. water, steam and other media compatible with material of material of the valve inner parts. The valve max. differential pressure value is 4,0 MPa with respect to the pressure nominal and concrete conditions of operation (ratio p_1 / p_2 , creation of cavitation, above critical flow etc.)

Installation

The valve can be piped only in a horizontal pipeline with vertically positioned stem and the valve lever positioned up above the valve body. The medium flow direction shall corespond to the arrows indiciated on the valve body. The lever is mounted on the right side from the medium flow direction unless it is required otherwise.

Technical data

Series	G 45 115 240	G 45 115 2100	G 45 115 516	G 45 115 525	G 45 115 540	G 45 115 564	G 45 115 5100	
Type of valve		Lever co	ntrol valve, fla	nged, straight	through,doub-	le-seated		
Nominal size range	200	150	200, 300, 400	200, 400	200, 400	150	150	
Nominal pressure	40	100	16	25	40	64	100	
Body material	Alloy ste	el 1.7357		Carbon steel 1.0619				
Operating temp. range		-20 to 550°C		-20 to 400°C				
Connection*	ČSN 13 1213	ČSN 13 1215	ČSN 13 1211	ČSN 13 1212	ČSN 13 1213	ČSN 13 1214	ČSN 13 1215	
Type of trim				t cage - conto				
Flow characteristic		Linear, e	qual-percentag	ge acc. to ČSI	N EN 60 534-1	1 (4/1997)		
Flow area range Fs [cm²]	17 - 200			17 - 408	17 - 408	10 - 110	10 - 110	
Kvs values range	76,5 - 900	45 - 495	76,5 - 1836	76,5 - 1836	76,5 - 1836	45 - 495	45 - 495	
Leakage rate		Class III acc. to ČSN EN 1349 (5/2001)						

^{*)} mentioned ČSN are from 1963. After the agreement with the producer, it is possible to make the connection acc. to ČSN 13 1060 (7/1995) or ČSN EN 1092-1 (4/2002).

Dimensions and weights for the type G 45 115 DN 150 to 300

Туре		7. 7.	6 43 33 6	G 45 115 525	G 45 115 240 G 45 115 540	G 45 115 564	G 45 115 2100 G 45 115 5100
DN	[mm]	200	300	200	200	150	150
D	[mm]	200	300	200	200	150	150
L	[mm]	600	850	600	600	600	600
~V ~V₁	[mm]	680	930	680	680	660	660
~V ₁	[mm]	360	500	360	360	360	360
D ₁	[mm]	335	460	360	375	340	350
D_2	[mm]	295	410	310	320	280	290
D_3	[mm]	268	378	278	280	240	250
A f	[mm]	270	270	270	270	280	280
f	[mm]	3	4	3	3	3	3
а	[mm]	24	28	30	34	36	44
d	[mm]	23	27	27	30	33	33
n	[mm]	12	12	12	12	8	12
Fs	[cm ²]	17-200	40-250	17-200	17-200	10-110	10-110
Kvs	[m³/h]	76,5-900	180-1125	76,5-900	76,5-900	45-495	45-495
m	[kg]	380	600	380	380	400	420

Dimensions and weights for the type G 45 115 DN 400

Туре		G 45 115 516	G 45 115 525	G 45 115 540
DN	[mm]	400	400	400
D	[mm]	400	400	400
$\begin{array}{c} \frac{D}{L} \\ \frac{L_1}{L_2} \\ \frac{-V_1}{D_1} \\ \frac{D_2}{D_3} \\ A \\ f \end{array}$	[mm]	900	900	900
L,	[mm]	856	856	856
L_{z}	[mm]	306	306	306
~V	[mm]	910	910	910
~V ₁	[mm]	360	360	360
D_1	[mm]	580	610	655
D_2	[mm]	525	550	585
D_3	[mm]	490	505	535
Α	[mm]	280	280	280
f	[mm]	4	4	4
а	[mm]	50	50	50
d	[mm]	30	33	40
n	[mm]	16	16	16
Fs	[cm ²]	80-408	80-408	80-408
Kvs	[m³/h]	360-1100	360-1100	360-1100
m	[kg]	1023	1023	1023

Control valves DN 300, PN 40

Description

The valve is double-seat, lever-actuated, designed to be actuated with an electric actuator, possibly with an electric or a hydraulic cylinder. It is also possible to use linear or rotative actuator. Its control plug is always designed according to the parameters specified in the order and according to the required type of flow characteristic.he valves can be delivered with lever actuators of the following producer: ZPA Pečky - Modact MPS, Modact Control MPS and Modact Variant MPR, possibly with linear actuators ZPA Pečky, Regada Prešov and rotative actuators Auma or Schiebel. The connection stem between the valve's lever and the actuator is not a subject of the delivery unless it is ordered.

Application

The valve serves as a control, reduction or a by-pass valve with indirect or direct actuating. The max. permissible operating pressures acc. to EN 12 516-1 see page 14 of this catalogue. The intention to use the valve for higher temperatures must be agreed upon with the producer. The control valve proper function depends on the sizing and execution of the control station, therefore the valve design and its specification is recommended to be carried out together with the producer.

Process media

The valves are designed to regulate the flow and pressure of liquids, possibly of vapours and gases e.g. water, steam and other media compatible with material of the valve inner parts. The valve max. differential pressure value is 4,0 MPa with respect to the pressure nominal and concrete conditions of operation (ratio p_1/p_2 , creation of cavitation, above critical flow etc.)

Installation

The valve can be piped only in a horizontal pipeline with vertically positioned stem and the valve lever positioned up above the valve body. The medium flow direction shall corespond to the arrows indiciated on the valve body. The lever is mounted on the right side from the medium flow direction unless it is required otherwise.

Technical data

G 45 125 240	G 45 125 540				
Control valve, flanged, straight-through, double-seated					
300					
40					
Alloy steel 1.7357	Carbon steel 1.0619				
-20 to 450°C	-20 to 400°C				
ČSN 13 10	070 (1984)				
	oured plug				
Linear, equal-percentage acc.	to ČSN EN 60 534-1 (4/1997)				
40 - 175					
180 - 787,5					
Class III acc. to ČSN EN 1349 (5/2001)					
	Control valve, flanged, stra 31 Alloy steel 1.7357 -20 to 450°C ČSN 13 11 Seat - cont Linear, equal-percentage acc. 40 - 180 -				

^{*)} After the agreement with the producer, it is possible to make the connection acc. to the valid ČSN 13 1075 (3/1991) or ČSN EN 12 627 (8/2000)

Dimensions and weights for G 45 125 DN 300

Туре		G 45 125 540	G 45 125 240
DN	[mm]	300	300
D	[mm]	324	324
L	[mm]	900	900
~V	[mm]	660	494
L ~V ~V ₁ t	[mm]	265	265
t	[mm]	8	8
Lı	[mm]	440	
$\frac{L_1}{L_2}$	[mm]	110	
Α	[mm]	240	
Z	[mm]	1	60
Fs	[cm ²]	40-175	40-175
Kvs	[m³/h]	180-787,5	180-787,5
m	[kg]	375	300

G 45 125 240

52 262 52 263 52 264

Electric actuators Modact MPS and Modact MPS Control ZPA Pečky

Technical data

Туре	Modact MPS Moda	act MPS Control
Voltage	3 x 230 V / 400 V ± 69	%
Frequency	50 Hz	
Motor power	See specification tabl	е
Control	2 - position or 3 - position or	control
Torgue range	160 to 1250 Nm	
Travel range	60° to 160°	
Enclosure	IP 55	
Process media max. temperature	Acc. to used valve	
Ambient temperature range	-25 to 55°C	
Ambient humidity range	10 - 100 % with condens	ation
Weight	max. 120 kg	

Wiring diagram of actuator Modact MPS

Execution - terminal board Position transmitter : resistance $2x100 \Omega$

Position transmitter : capacity CPT 1 1/A 4 - 20 mA

Wiring diagram of actuator Modact MPS Control

With current transmitter, built-in contactor combination, heat reley, positioner ZP2.RE and dynamic brake BAM-001.

SQ1 (MO) torgue switch in "opening" direction torgue switch in "closing" direction SQ2 (MZ) SQ3 (PO) limit switch in "opening" direction SQ5 (PZ) limit switch in "closing" direction signalisation switch in "opening" direction signalisation switch in "closing" direction SQ4 (SO) SQ6 (SZ) heaters 2 x TR 551 10k/A EΗ CPT1 capacity position transmitter CPT1/A4-20 mA BAM-001 dynamic brake KO contactor in "opening" direction ΚZ contactor in "closing" direction heat reley SA1 control switch "local-remote" SA2 switch "open - close" BQ1, BQ2 position transmitter $2 \times 100 \Omega$ ZP2.RE micro-computer positioner power supply source for current GS ransmitter 230V/24V M1~ one-phase motor inductive, three-phase motor M3~ С motor capacitor Т mains transformer S terminal board plug "KBNS"

Specification for actuators Modact MPS and Modact MPS Control

Basic equipment: 1 electromotor

2 heaters

2 torgue switches MO, MZ 2 limit switches PO, PZ

2 signalisation switches SO, SZ - for actuators with CPT 1/A and actuators without any transmitter

Basic technical data:

Туре	Tripping	Running	Electromotor			0.1 (.11.	347-1-1-1	Specification No	
	torgue setting range [Nm]	time [s/90°]	Motor power [W]	Current to motor In [A]	Current to motor Iz [A]	Oil filling [1]	Weight [kg]	Basic	Additional
MPS 32/16		16						52 262	XX1X
MPS 32/32	400 000	32	180	0.57	1,82	1,82 3,4	70		XX2X
MPS 32/63	160 - 320	63	100	0,57					XX3X
MPS 32/120		120							XX4X
MPS 63/16		16	370	1,05	3,25	10	120	52 263	XX1X
MPS 63/32	320 - 630	32	180	0,57	1,82				XX2X
MPS 63/63	320 - 630	63							XX3X
MPS 63/120		120							XX4X
MPS 125/16		16						52 264	XX1X
MPS 125/32	620 4250	32	370	1,05	3,25	10	120		XX2X
MPS 125/63	630 - 1250	63				10	120		XX3X
MPS 125/120		120	180	0,57	1,82				XX4X

Execution, electric connection :

Via terminal board		6XXX
With conector KBSN (for Modact MPS only)		7XXX

Operating travel -mechanically connected with controlled element

60° X1XX X2XX 90° with lever and flange with stops 120° X3XX 160° X4XX

Additional equipment for actuators Modact MPS

Resistance position transmitter 2 x 100 Ω XXX1 Execution without any position transmitter XXX0 Current pos. transmitter CPT 1/A 4-20 mA with built-in power supply generator XXX7 Current pos. transmitter CPT 1/A 4-20 mA wo. built-in power supply generator XXX9

Additional equipment for actuators Modact MPS Control					Without positioner and brake BAM, with reversible contactors	
dottatoro Modaot (Mi O Oomao)	with BMO	without BMO	with BMO	without BMO	with BMO	without BMO
Without position trasnmitter			XXXC	XXXL	XXXG	XXXR
Resistance position transmitter 2 x 100 Ω			XXXD	XXXM	XXXH	XXXS
CPT 1/A 4-20 mA with built-in power supply generator			XXXE	XXXN	XXXJ	XXXT
CPT 1/A 4-20 mA without built-in power supply generator	XXXA	XXXB	XXXF	XXXP	XXXK	XXXU

Dimensions of actuator Modact MPS and Modact MPS Control

	52 262	52 263	52 264
Α	620	712	731
В	386	460	479
С	234	25	52
B C D E	□200	□2	50
E	62	8	2
E ₁	60	8	0
F	346	42	20
G	340	44	1 5
F G G ₁	456	56	32
J	120	14	1 5
K	70	10	00
L	90	1′	10
M	140	20	00
N	41	6	0
0	□14	۵′	18
S	56	7	0
Т	4		7
U X Y Z d	25	3	0
X	65	8	0
Y	41	5	5
Z	273	27	78
d	□40 h 8	□50	h 8
\mathbf{d}_1	□40 H 7	□50	H 7
d_2	3x□20H8	3x□2	25H8
b	12 P9	16	P9
h	8	1	0
е	35	43	3,8

Modact MPS Control

_	52 262	52 263	52 264				
A	370	440					
В	250	275					

Lever

Modact MPS

Base board - holes

Electric actuators Modact Variant MPR ZPA Pečky

Technical data

Туре	Modact Variant MPR
Voltage	230 V ± 6%
Frequency	50 Hz
Motor power	50 W
Control	Continuous
Torgue range	250 to 4000 Nm
Travel range	60° to 160°
Enclosure	IP 55
Process media max. temperature	Acc. to used valve
Ambient temperature range	-25 to 55 ℃
Ambient humidity range	10 - 100 % with condensation
Weight	max. 282 kg

Wiring diagram of actuator

Execution - terminal board With resistance transmitter 2x100 Ω

With current transmitter CPT1/A, without built-in power supply source

With current transmitter CPT1/A with built-in power supply source

torgue switch in "opening" direction torgue switch for "closing" direction MO ΜZ limit switch in "opening" direction limit switch in "closing" direction signalisation switch in "opening" direction PO PΖ SO signalisation switch in "closing" direction SZ Н heaters CPT1 capacity position transmitter CPT1/A4 - 20 mA resistance position transmitter $2 \times 100 \Omega$ V2 GS power supply source for current transmitter 230V/24V M induction, two-phase motor С capacitor SZ terminal board plug "KBNS"

Specification of actuator Modact Variant MPR

	Nominal	Max.	Running time		Electromoto	r	Oil	M/a talak	Specifica	ition No.
Туре	torgue [Nm]	torgue [N/m]	range [sec/90°]	[W]	[µF]	BF/ŘF [A]	filling [kg]	Weight [kg]	Basic 52 222 52 223 upply generator	Additional
MPR 25-40	250-400	1400	10-19							XX0X
MPR 40-63	400-630	1750	14-30	50	8	0,6/0,6	4,4	104	52 222	XX1X
MPR 63-100	630-1000	2650	30-55							XX2X
MPR 100-200	1000-2000	4550	50-80							XX0X
MPR 160-300	1600-3000	5950	73-138	50	8	0,6/0,6	4,4	282	52 223	XX1X
MPR 250-400	2500-4000	8940	130-195					.,. 292 92 229		XX2X
Execution,	electrical co	onnection:								
√ia termina	l board									6XXX
Nith conect	or KBSN									7XXX
				60° for 5	2 222		67,5° for	r 52 223		X1XX
				90° for 5	2 222		90° fo	r 52 223		X2XX
Operating to	ravel			120° for 5	2 222		112,5° for	r 52 223		X3XX
				160° for 5	2 222		157° fo	r 52 223		X4XX
				90° for 5	2 222; dire	ct connection.				X5XX
			Execution	without po	sition trans	smitter				XXX1
V-I-POI	C	V2	Position re	esistance transmitter 2 x 100 Ω						
Additional e equipment	lectric	CPT1+GS	Position cu	urrent trans	mitter CP	T 1/A 4-20 i	mA with built	built-in power supply generator	XXX7	
quipinent		CPT1								XXX9
21		with single				export only				XXXX/3
Stem		with double				export only				XXXX/4

Dimensions of actuator Modact Variant MPR

	52 222	52 223
Α	782	793
В	517	548
С	265	220
D	□250	□300
E	85	123
E ₁	80	120
F	420	560
G	555	750
J	145	260
A B C D E E 1 F G J K L M N O P R S T U X Y Z d	100	185
L	110	
M	200	200
N	57	33
0	□18	□22
Р	40	55
R	170	400
S	70	180
Т	7	11
U	30	36
X	80	130
Υ	55	80
Z	278	490
d	□50 h 8	□90 h 8
d_1	□40 h 7	□90 h 7
d_2	3x□25H8	3x□40h8
b	16 P9	25 P9
h	10	14
е	43,8	81,3

Modact Variant MPR 52 223

Lever

Lever

Base board - holes

Base board - holes

Electric actuators Modact MTR ZPA Křižík Prešov

Technical data

Type	Modact MTR
Voltage	230 V
Frequency	50 / 60 Hz
Motor power	16 or 25 W
Control	3 - pos. c. (in connection with NOTREP positioner - continuous)
Nominal force	6.3, 10, 16, 25 kN
Travel	12,5 to 100 mm
Enclosure	IP 54 (IP 65 on request)
Process medium max. temperature	Acc. to used valve
Ambient temperature range	-25 to 55°C
Ambient humidity limit	90 % (tropical version: 100 % with condensation)
Weight	27 to 31 kg

Wiring diagram of actuator

Execution - terminal board Wiring diagram with resistance transmitter 2x100 Ω

Wiring diagram with capacity transmitter 4 - 20 mA (with its source)

Wiring diagram with inductive transmitter (0) 4 - 20 mA; 0 - 5 mA

SQ1 (MO) power switch in "opening" direction SQ2 (MZ) power switch in "closing" direction

SQ3 (PO) limit switch in "opening" direction
SQ4 (PZ) limit switch in "closing" direction
SQ5 (SO) signalisation switch in "opening" direction
SQ6 (SZ) signalisation switch in "closing" direction

EH1, EH2 heaters 2xTR 551 10k/A

BC2 resistance position transmitter $2 \times 100 \Omega$

BC3 inductive position transmitter (0) 4 - 20 mA; 0 - 5 mA

BC4 capacity position transmitter 4 - 20 mA

C capacitor X terminal board

Specification of Modact MTR

Electric	actuator MTF	R, linea	ar						52 420.	Х	Χ	Х	Χ	1	X
Execution CX - as standard (-25°C to 55°C), connection via terminal board														\neg	
Execution T2 - tropical (-25°C to 55°C, 100% condensation), connection via terminal board 6 16															
	•	,			, ,		16				2			\Box	
							25				3				
Travel	Travel [mm] 32										4				
							40				5				
							63				6				
Linear	unit with acme	threa	d Tr 26x5											\Box	
æ	6300	D 8	4000 - 6300		32	D	38 - 32	6 29	19000			0			
inal forc	4000	for it	2500 - 4000	inal ed	50	ed agi	60 - 50	mal	13000			1			
Nominal linear force	10000	Operating linera force	6300 - 10000	Nominal speed	32	Operating speed	38 - 32	laxi	30000			2			
∠ <u>≛</u>	6300	Ō <u>.</u> <u>Ĕ</u>	4000 - 6300	0 - 6300 Image: Control of the contr		20000			3						
Linear	unit with ball b	olt K 2	5x5											\top	
	16000	Operating linear force	10000 - 16000		32		38 - 32		39000			4			
_ [_] -60	10000		6300 - 10000		50	50 32 50 8beed 63	60 - 50	Maximal linear force ²⁾	30000			5			
Nominal linear force ¹⁾	25000		10000 - 25000		32		38 - 32		55000			6			
lom sar 1	16000	per	10000 - 16000	lon spe	50		60 - 50		40000			7			
Z iii	10000	0. <u>⊆</u>	6300 - 10000	_	63		75 - 63		39000			8	1		
	6300		4000 - 6300		100		120 - 100		29000			9			
			Without transmitter										0		
				2 x 10	0 Ω								1		
			Resistance	1 x 2000 Ω									2		
			rtesistance	2 x 2000 Ω									3		
Transn	nitter			1 x 2000 Ω + 1x100 Ω									4		
			Inductive [mA]	(0) 4 -	20								5		
			inductive [mA]	0 - 5									6		
Capacity [mA]					4 - 20 (with its generator)								7		
			Capacity [IIIA]	4 - 20	(withou	ut its ge	nerator)						8		
				Colum	ns UNI	L									7
Specia	l mechanical d	connec	tion	Columns Č. Třebová										8	
-				2 sign	alisatio	n switc	hes SQ5, SQ6								

Switching-off linear force is set to nominal value with tolerance of + 30 %.
 Measured linear force with motor running into short-circuit state with voltage of 230 V on position controller.

Dimensions of Modact MTR

		th ac hrea		With ball bolt				
Columns ČT	130	378	707	130	400	729		
Columns UNL	74	320	649	74	344	673		

Maximal permissible overpressures acc. to EN 12 516-1 [MPa]

Material	PN	Temperature [°C]								
		200	250	300	350	400	450	500	550	
Cast steel 1.0619	16	1.14	1.04	0.94	0.88	0.84				
	25	1.78	1.62	1.47	1.37	1.32				
	40	2.84	2.60	2.35	2.19	2.11				
	63	4.48	4.09	3.71	3.45	3.33				
	100	7.11	6.50	5.89	5.48	5.28				
Alloy steel 1.7357	40	3.74	3.57	3.33	3.09	2.89	2.67	5.57	2.21	
	100	9.34	8.93	8.32	7.71	7.22	6.67	8.90	3.50	

Notes:

Notes:		